Solvable PT-symmetric potentials in higher dimensions

被引:16
|
作者
Levai, G. [1 ]
机构
[1] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary
关键词
D O I
10.1088/1751-8113/40/15/F02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
PT-symmetric, non-relativistic quantum mechanical potentials are discussed in two and three spatial dimensions. Conditions are formulated under which these potentials are PT-symmetric and can be solved exactly by the separation of the radial and angular variables. It is found that the angular variables play an essential role in introducing non-Hermiticity via the imaginary potential terms. A simple partially exactly solvable potential is used to demonstrate various aspects of PT symmetry in both two and three dimensions. Possible generalizations of the results are outlined.
引用
收藏
页码:F273 / F280
页数:8
相关论文
共 50 条
  • [31] Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart
    Bender, Carl M.
    Mannheim, Philip D.
    PHYSICAL REVIEW D, 2008, 78 (02):
  • [32] Relativistic confinement of neutral fermions with partially exactly solvable and exactly solvable PT-Symmetric potentials in the presence of position-dependent mass
    Jia, Chun-Sheng
    Wang, Ping-Quan
    Liu, Jian-Yi
    He, Su
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (10) : 2513 - 2522
  • [33] Relativistic Confinement of Neutral Fermions with Partially Exactly Solvable and Exactly Solvable PT-Symmetric Potentials in the Presence of Position-Dependent Mass
    Chun-Sheng Jia
    Ping-Quan Wang
    Jian-Yi Liu
    Su He
    International Journal of Theoretical Physics, 2008, 47 : 2513 - 2522
  • [34] PT-symmetric quantum field theory in D dimensions
    Bender, Carl M.
    Hassanpour, Nima
    Klevansky, S. P.
    Sarkar, Sarben
    PHYSICAL REVIEW D, 2018, 98 (12)
  • [35] Bragg solitons in nonlinear PT-symmetric periodic potentials
    Miri, Mohammad-Ali
    Aceves, Alejandro B.
    Kottos, Tsampikos
    Kovanis, Vassilios
    Christodoulides, Demetrios N.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [36] Transmission in a dimerized chain influenced by PT-symmetric potentials
    Zhang, Lian-Lian
    Zhan, Guo-Hui
    He, Jing
    Zhang, Yang
    Gong, Wei-Jiang
    PHYSICA SCRIPTA, 2019, 94 (08)
  • [37] Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra
    Bender, Carl M.
    Hook, Daniel W.
    Mead, Lawrence R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (39)
  • [38] PT-symmetric optical potentials in a coherent atomic medium
    Sheng, Jiteng
    Miri, Mohammad-Ali
    Christodoulides, Demetrios N.
    Xiao, Min
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [39] Scattering by PT-symmetric non-local potentials
    Cannata, Francesco
    Ventura, Alberto
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (09) : 943 - 951
  • [40] 1/L expansions for a class of PT-symmetric potentials
    Bíla, H
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) : 1049 - 1054