Exactly Solvable Wadati Potentials in the PT-Symmetric Gross-Pitaevskii Equation

被引:20
|
作者
Barashenkov, I. V. [1 ,2 ]
Zezyulin, D. A. [3 ,4 ]
Konotop, V. V. [3 ,4 ]
机构
[1] Natl Inst Theoret Phys, Stellenbosch, Western Cape, South Africa
[2] Univ Cape Town, Dept Math, ZA-7701 Cape Town, South Africa
[3] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, Edificio C8, P-1749016 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Dept Fis, Edificio C8, P-1749016 Lisbon, Portugal
关键词
SCATTERING; BUBBLES; MODES;
D O I
10.1007/978-3-319-31356-6_9
中图分类号
O59 [应用物理学];
学科分类号
摘要
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: V = -W-2 + iW(x). We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [41] The stochastic Gross-Pitaevskii equation: II
    Gardiner, CW
    Davis, MJ
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (23) : 4731 - 4753
  • [42] Gross-Pitaevskii equation: Variational approach
    Perez, JCD
    Trallero-Giner, C
    Richard, VL
    Trallero-Herrero, C
    Birman, JL
    PHYSICA STATUS SOLIDI C - CONFERENCE AND CRITICAL REVIEWS, VOL 2, NO 10, 2005, 2 (10): : 3665 - 3668
  • [43] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [44] The inverse problem for the Gross-Pitaevskii equation
    Malomed, Boris A.
    Stepanyants, Yury A.
    CHAOS, 2010, 20 (01)
  • [45] A symplectic scheme of Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 552 - 553
  • [46] New exactly solvable isospectral partners for PT symmetric potentials
    Sinha, A
    Roy, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2509 - 2518
  • [47] On nonlocal Gross-Pitaevskii equations with periodic potentials
    Curtis, Christopher W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [48] Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions
    Adhikari, Sadhan K.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2937 - 2944
  • [49] Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions
    Adhikari, SK
    PHYSICAL REVIEW E, 2000, 62 (02): : 2937 - 2944
  • [50] Solvable PT-symmetric Hamiltonians
    M. Znojil
    Physics of Atomic Nuclei, 2002, 65 : 1149 - 1151