Collapse in the symmetric Gross-Pitaevskii equation

被引:1
|
作者
Rybin, AV
Varzugin, GG
Timonen, J
机构
[1] Univ Jyvaskyla, Dept Phys, FIN-40351 Jyvaskyla, Finland
[2] St Petersburg State Univ, Inst Phys, St Petersburg 198904, Russia
关键词
D O I
10.1088/1464-4266/6/5/029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A generic mechanism of collapse in the Gross-Pitaevskii equation with attractive interparticle interactions is gained by reformulating this equation as Newton's equation of motion for a system of particles with a constraint. 'Quantum pressure' effects give rise to formation of a potential barrier around the emerging singularity, which prevents a fraction of the particles from falling into the singularity. For reasonable initial widths of the condensate, the fraction of collapsing particles for spherically symmetric traps is found to be consistently about 0.7.
引用
收藏
页码:S392 / S396
页数:5
相关论文
共 50 条
  • [1] Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
    Rybin, AV
    Varzugin, GG
    Lindberg, M
    Timonen, J
    Bullough, RK
    PHYSICAL REVIEW E, 2000, 62 (05): : 6224 - 6228
  • [2] Scattering for the Gross-Pitaevskii equation
    Gustafson, Stephen
    Nakanishi, Kenji
    Tsai, Tai-Peng
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 273 - 285
  • [3] The stochastic Gross-Pitaevskii equation
    Gardiner, CW
    Anglin, JR
    Fudge, TIA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (06) : 1555 - 1582
  • [4] ROTONS AND THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PHYSICS LETTERS A, 1980, 79 (01) : 95 - 97
  • [5] Logarithmic Gross-Pitaevskii equation
    Carles, Remi
    Ferriere, Guillaume
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (1-2) : 88 - 120
  • [6] Quantum Gross-Pitaevskii Equation
    Haegeman, Jutho
    Draxler, Damian
    Stojevic, Vid
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Verstraete, Frank
    SCIPOST PHYSICS, 2017, 3 (01):
  • [7] Scattering theory for the Gross-Pitaevskii equation
    Nakanishi, Kenji
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 149 - 158
  • [8] Stochastic fluctuations in the Gross-Pitaevskii equation
    de Bouard, Anne
    Fukuizumi, Reika
    NONLINEARITY, 2007, 20 (12) : 2823 - 2844
  • [9] Stochastic projected Gross-Pitaevskii equation
    Rooney, S. J.
    Blakie, P. B.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [10] Vortices in nonlocal Gross-Pitaevskii equation
    Shchesnovich, VS
    Kraenkel, RA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6633 - 6651