On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation

被引:10
|
作者
Lee, Soojeong [1 ]
Jeon, Gwanggil [2 ]
Lee, Gangseong [3 ]
机构
[1] Hanyang Univ, Dept Elect & Comp Engn, Seoul 133791, South Korea
[2] Incheon Natl Univ, Dept Embedded Syst Engn, Inchon 406772, South Korea
[3] Kwangwoon Univ, Sch Gen Educ, Seoul 139701, South Korea
来源
SENSORS | 2013年 / 13卷 / 10期
基金
新加坡国家研究基金会;
关键词
oscillometric blood pressure estimation; systolic and diastolic ratios; Bayesian model; maximum amplitude algorithm;
D O I
10.3390/s131013609
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The maximum amplitude algorithm (MAA) is generally utilized in the estimation of the pressure values, and it uses heuristically obtained ratios of systolic and diastolic oscillometric amplitude to the mean arterial pressure (known as systolic and diastolic ratios) in order to estimate the systolic and diastolic pressures. This paper proposes a Bayesian model to estimate the systolic and diastolic ratios. These ratios are an improvement over the single fixed systolic and diastolic ratios used in the algorithms that are available in the literature. The proposed method shows lower mean difference (MD) with standard deviation (SD) compared to the MAA for both SBP and DBP consistently in all the five measurements.
引用
收藏
页码:13609 / 13623
页数:15
相关论文
共 50 条
  • [21] Maximum-a-Posteriori Estimation with Bayesian Confidence Regions
    Pereyra, Marcelo
    SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (01): : 285 - 302
  • [22] Optimal Sampling Strategy Development Methodology Using Maximum A Posteriori Bayesian Estimation
    van der Meer, A. Franciscus
    Marcus, Marco A. E.
    Touw, Daniel J.
    Proost, Johannes H.
    Neef, Cees
    THERAPEUTIC DRUG MONITORING, 2011, 33 (02) : 133 - 146
  • [23] A POSTERIORI VOICED / UNVOICED PROBABILITY ESTIMATION BASED ON A SINUSOIDAL MODEL
    Rehr, Robert
    Krawczyk, Martin
    Gerkmann, Timo
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [24] Adaptive Demodulation Using Rateless Codes Based on Maximum a Posteriori Probability
    Turk, Kadir
    Fan, Pingyi
    IEEE COMMUNICATIONS LETTERS, 2012, 16 (08) : 1284 - 1287
  • [25] Bayesian maximum a posteriori-estimation of κ turbulence model parameters using algorithmic differentiation in SOLPS-ITER
    Carli, Stefano
    Dekeyser, Wouter
    Blommaert, Maarten
    Coosemans, Reinart
    Van Uytven, Wim
    Baelmans, Martine
    CONTRIBUTIONS TO PLASMA PHYSICS, 2022, 62 (5-6)
  • [26] MULTIREGIME ESTIMATION AND IDENTIFICATION BY THE METHOD OF MAXIMUM OF THE MEAN A POSTERIORI PROBABILITY
    KACHANOV, BO
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (01): : 109 - 114
  • [27] Maximum a Posteriori Probability Estimation for Online Surveillance Video Synopsis
    Huang, Chun-Rong
    Chung, Pau-Choo
    Yang, Di-Kai
    Chen, Hsing-Cheng
    Huang, Guan-Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (08) : 1417 - 1429
  • [28] Distributed Maximum a Posteriori Probability Estimation for Tracking of Dynamic Systems
    Jakubiec, Felicia Y.
    Ribeiro, Alejandro
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 1478 - 1482
  • [29] Oscillometric blood pressure measurements on smartphones using vibrometric force estimation
    Colin Barry
    Yinan Xuan
    Ava Fascetti
    Alison Moore
    Edward Jay Wang
    Scientific Reports, 14 (1)
  • [30] Estimation of Blood Pressure Measurements for Hypertension Diagnosis Using Oscillometric Method
    Shin, Youngsuk
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (02) : 806 - 812