Distributed Maximum a Posteriori Probability Estimation for Tracking of Dynamic Systems

被引:0
|
作者
Jakubiec, Felicia Y. [1 ]
Ribeiro, Alejandro [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
关键词
CONSENSUS; NETWORKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a framework for the estimation of time-varying random signals with wireless sensor networks. Given a continuous time model, sensors collect noisy observations according to the discrete-time equivalent system defined by the sampling period of observations. Estimation is performed locally using a maximum a posteriori probability estimator (MAP) within a time window. To incorporate information from neighboring sensors we introduce Lagrange multipliers to penalize the disagreement between estimates. We show that the distributed (D-) MAP algorithm is able to track dynamical signals with an error characterized in terms of problem constants. This error vanishes with the sampling period if the loglikelihood function satisfies a smoothness condition.
引用
收藏
页码:1478 / 1482
页数:5
相关论文
共 50 条
  • [1] D-MAP: Distributed Maximum a Posteriori Probability Estimation of Dynamic Systems
    Jakubiec, Felicia Y.
    Ribeiro, Alejandro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (02) : 450 - 466
  • [2] DISTRIBUTED MAXIMUM A POSTERIORI PROBABILITY ESTIMATION OF DYNAMIC SYSTEMS WITH WIRELESS SENSOR NETWORKS
    Jakubiec, Felicia Y.
    Ribeiro, Alejandro
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2857 - 2860
  • [3] Fast, approximate maximum a posteriori probability parameter estimation
    Harrison, BF
    Tufts, DW
    Vaccaro, RJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) : 96 - 99
  • [4] Fast, approximate maximum a posteriori probability parameter estimation
    Naval Undersea Warfare Cent, Newport, United States
    [J]. IEEE Signal Process Lett, 4 (96-99):
  • [5] IMAGE MENSURATION BY MAXIMUM A-POSTERIORI PROBABILITY ESTIMATION
    BURNETT, JW
    HUANG, TS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (02) : 157 - 166
  • [6] Hierarchical Motion Estimation Algorithm based on Maximum a Posteriori Probability
    Choi, Dooseop
    An, Taeg-Hyun
    Kim, Taejeong
    [J]. 2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [7] MULTIREGIME ESTIMATION AND IDENTIFICATION BY THE METHOD OF MAXIMUM OF THE MEAN A POSTERIORI PROBABILITY
    KACHANOV, BO
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (01): : 109 - 114
  • [8] Maximum a Posteriori Probability Estimation for Online Surveillance Video Synopsis
    Huang, Chun-Rong
    Chung, Pau-Choo
    Yang, Di-Kai
    Chen, Hsing-Cheng
    Huang, Guan-Jie
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (08) : 1417 - 1429
  • [9] Maximum likelihood and maximum a posteriori adaptation for distributed speaker recognition systems
    Sit, CH
    Mak, MW
    Kung, SY
    [J]. BIOMETRIC AUTHENTICATION, PROCEEDINGS, 2004, 3072 : 640 - 647
  • [10] Improving dynamic tomography, through Maximum a Posteriori estimation
    Myers, Glenn R.
    Geleta, Matthew
    Kingston, Andrew M.
    Recur, Benoit
    Sheppard, Adrian P.
    [J]. DEVELOPMENTS IN X-RAY TOMOGRAPHY IX, 2014, 9212