Maximum a Posteriori Probability Estimation for Online Surveillance Video Synopsis

被引:62
|
作者
Huang, Chun-Rong [1 ,2 ]
Chung, Pau-Choo [3 ,4 ]
Yang, Di-Kai [3 ]
Chen, Hsing-Cheng [3 ]
Huang, Guan-Jie [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Comp Sci & Engn, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Inst Networking & Multimedia, Taichung 402, Taiwan
[3] Natl Cheng Kung Univ, Inst Comp & Commun Engn, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 70101, Taiwan
关键词
Maximum a posteriori (MAP) estimation; video summarization; video surveillance; video synopsis; SEGMENTATION; RECOGNITION; MODEL; SCALE;
D O I
10.1109/TCSVT.2014.2308603
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To reduce human efforts in browsing long surveillance videos, synopsis videos are proposed. Traditional synopsis video generation applying optimization on video tubes is very time consuming and infeasible for real-time online generation. This dilemma significantly reduces the feasibility of synopsis video generation in practical situations. To solve this problem, the synopsis video generation problem is formulated as a maximum a posteriori probability (MAP) estimation problem in this paper, where the positions and appearing frames of video objects are chronologically rearranged in real time without the need to know their complete trajectories. Moreover, a synopsis table is employed with MAP estimation to decide the temporal locations of the incoming foreground objects in the synopsis video without needing an optimization procedure. As a result, the computational complexity of the proposed video synopsis generation method can be significantly reduced. Furthermore, as it does not require prescreening the entire video, this approach can be applied on online streaming videos.
引用
收藏
页码:1417 / 1429
页数:13
相关论文
共 50 条
  • [1] Online Surveillance Video Synopsis
    Huang, Chun-Rong
    Chen, Hsing-Cheng
    Chung, Pau-Choo
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012, : 1843 - 1846
  • [2] Fast, approximate maximum a posteriori probability parameter estimation
    Naval Undersea Warfare Cent, Newport, United States
    [J]. IEEE Signal Process Lett, 4 (96-99):
  • [3] Fast, approximate maximum a posteriori probability parameter estimation
    Harrison, BF
    Tufts, DW
    Vaccaro, RJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) : 96 - 99
  • [4] IMAGE MENSURATION BY MAXIMUM A-POSTERIORI PROBABILITY ESTIMATION
    BURNETT, JW
    HUANG, TS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (02) : 157 - 166
  • [5] Spatiotemporal wavelet maximum a posteriori estimation for video denoising
    Khazron, Pavel A.
    Selesnick, Ivan W.
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (04)
  • [6] Hierarchical Motion Estimation Algorithm based on Maximum a Posteriori Probability
    Choi, Dooseop
    An, Taeg-Hyun
    Kim, Taejeong
    [J]. 2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [7] MULTIREGIME ESTIMATION AND IDENTIFICATION BY THE METHOD OF MAXIMUM OF THE MEAN A POSTERIORI PROBABILITY
    KACHANOV, BO
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (01): : 109 - 114
  • [8] Distributed Maximum a Posteriori Probability Estimation for Tracking of Dynamic Systems
    Jakubiec, Felicia Y.
    Ribeiro, Alejandro
    [J]. 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 1478 - 1482
  • [9] Surveillance Video Synopsis
    Choudhary, Vikas
    Tiwari, A. K.
    [J]. SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, : 207 - 212
  • [10] An Improved Interaction Estimation and Optimization Method for Surveillance Video Synopsis
    Namitha, Kalakunnath
    Geetha, Madathilkulangara
    Athi, Narayanan
    [J]. IEEE MULTIMEDIA, 2023, 30 (03) : 25 - 36