On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation

被引:10
|
作者
Lee, Soojeong [1 ]
Jeon, Gwanggil [2 ]
Lee, Gangseong [3 ]
机构
[1] Hanyang Univ, Dept Elect & Comp Engn, Seoul 133791, South Korea
[2] Incheon Natl Univ, Dept Embedded Syst Engn, Inchon 406772, South Korea
[3] Kwangwoon Univ, Sch Gen Educ, Seoul 139701, South Korea
来源
SENSORS | 2013年 / 13卷 / 10期
基金
新加坡国家研究基金会;
关键词
oscillometric blood pressure estimation; systolic and diastolic ratios; Bayesian model; maximum amplitude algorithm;
D O I
10.3390/s131013609
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The maximum amplitude algorithm (MAA) is generally utilized in the estimation of the pressure values, and it uses heuristically obtained ratios of systolic and diastolic oscillometric amplitude to the mean arterial pressure (known as systolic and diastolic ratios) in order to estimate the systolic and diastolic pressures. This paper proposes a Bayesian model to estimate the systolic and diastolic ratios. These ratios are an improvement over the single fixed systolic and diastolic ratios used in the algorithms that are available in the literature. The proposed method shows lower mean difference (MD) with standard deviation (SD) compared to the MAA for both SBP and DBP consistently in all the five measurements.
引用
收藏
页码:13609 / 13623
页数:15
相关论文
共 50 条
  • [31] Constrained Adjusted Maximum a Posteriori Estimation of Bayesian Network Parameters
    Di, Ruohai
    Wang, Peng
    He, Chuchao
    Guo, Zhigao
    ENTROPY, 2021, 23 (10)
  • [32] Maximum a posteriori Bayesian estimation of epirubicin clearance by limited sampling
    Ralph, LD
    Thomson, AH
    Dobbs, NA
    Twelves, C
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2004, 57 (06) : 764 - 772
  • [33] Precipitation retrieval from spaceborne microwave radiometers based on maximum a posteriori probability estimation
    Pierdicca, N
    Marzano, FS
    dAuria, G
    Basili, P
    Ciotti, P
    Mugnai, A
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (04): : 831 - 846
  • [34] Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation
    Dogrusoz, Y. Serinagaoglu
    Dubois, R.
    Abell, E.
    Cluitmans, M.
    Bear, L. R.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [35] Despeckling SAR Images Using Adaptive Bandelet Transform and Bayesian Maximum a Posteriori Estimation
    Gao, Qingwei
    Xu, Yanan
    Lu, Yixiang
    Zhong, Weinian
    PIAGENG 2009: IMAGE PROCESSING AND PHOTONICS FOR AGRICULTURAL ENGINEERING, 2009, 7489
  • [36] Maximum A Posteriori Probability Multiple-Pitch Tracking Using the Harmonic Model
    Koretz, Amitai
    Tabrikian, Joseph
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (07): : 2210 - 2221
  • [37] Signal Segmentation using Maximum a Posteriori Probability Estimator
    Popescu, Theodor D.
    2013 7TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2013, : 49 - 53
  • [38] Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model
    Lee, Soojeong
    Rajan, Sreeraman
    Jeon, Gwanggil
    Chang, Joon-Hyuk
    Dajanic, Hilmi R.
    Groza, Voicu Z.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 85 : 112 - 124
  • [39] Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems
    Helin, T.
    Burger, M.
    INVERSE PROBLEMS, 2015, 31 (08)
  • [40] Depth Estimation Based on Maximization of a Posteriori Probability
    Stankiewicz, Olgierd
    Wegner, Krzysztof
    Domanski, Marek
    COMPUTER VISION AND GRAPHICS, ICCVG 2016, 2016, 9972 : 253 - 265