SOLUTIONS OF A GENERALIZED MARKOFF EQUATION IN FIBONACCI NUMBERS

被引:3
|
作者
Hashim, Hayder Raheem [1 ]
Tengely, Szabolcs [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 400, H-4002 Debrecen, Hungary
关键词
Lucas sequences; Diophantine equations; Markoff equation;
D O I
10.1515/ms-2017-0414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find all the solutions (X, Y, Z) = (F-I, F-J, F-K), where F-I, F-J, and F-K represent nonzero Fibonacci numbers, satisfying a generalization of Markoff equation called the Jin-Schmidt equation: AX(2) + BY2 + CZ(2) = DXYZ + 1. (C) 2020 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1069 / 1078
页数:10
相关论文
共 50 条
  • [21] Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers
    Bitim, Bahar Demirturk
    Keskin, Refik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 451 - 459
  • [22] STROEKERS EQUATION AND FIBONACCI NUMBERS
    MAKOWSKI, A
    FIBONACCI QUARTERLY, 1988, 26 (04): : 336 - 337
  • [23] On Hyperbolic Numbers With Generalized Fibonacci Numbers Components
    Soykan, Yuksel
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 987 - 1004
  • [24] A Diophantine equation related to the sum of powers of two consecutive generalized Fibonacci numbers
    Chaves, Ana Paula
    Marques, Diego
    JOURNAL OF NUMBER THEORY, 2015, 156 : 1 - 14
  • [25] Counting Minimal Triples for a Generalized Markoff Equation
    Srinivasan, A.
    Calvo, L. A.
    EXPERIMENTAL MATHEMATICS, 2024,
  • [26] GENERALIZED FIBONACCI NUMBERS AS ELEMENTS OF IDEALS
    SHANNON, AG
    FIBONACCI QUARTERLY, 1979, 17 (04): : 347 - 349
  • [27] On Generalized Fibonacci Polynomials and Bernoulli Numbers
    Zhang, Tianping
    Ma, Yuankui
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (05)
  • [28] On the Sums of Reciprocal Generalized Fibonacci Numbers
    Kuhapatanakul, Kantaphon
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (07)
  • [29] GENERALIZED FIBONACCI NUMBERS WITH FIVE PARAMETERS
    Tasyurdu, Yasemin
    THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S495 - S505
  • [30] The generalized Fibonacci numbers of order k
    Bobrovskiy, V. P.
    Bukharitsyna, L., V
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 40 - 49