On the Sums of Reciprocal Generalized Fibonacci Numbers

被引:0
|
作者
Kuhapatanakul, Kantaphon [1 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Math, Bangkok 10900, Thailand
关键词
second-order recurrence; Fibonacci number; reciprocal sum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider the infinite sums of reciprocal generalized Fibonacci numbers and the infinite sums of reciprocal generalized Fibonacci sums. Applying the floor function to the reciprocals of these sums, our results generalize some identities of Holliday and Komatsu and extend some results of Liu and Zhao.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Alternating sums of reciprocal generalized Fibonacci numbers
    Kuhapatanakul, Kantaphon
    [J]. SPRINGERPLUS, 2014, 3
  • [2] On the alternating sums of reciprocal generalized Fibonacci numbers
    Ulutas, Yucel Turker
    Kuzuoglu, Gokhan
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (03)
  • [3] Reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Lekata
    [J]. DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 77 - +
  • [4] On the Reciprocal Sums of Products of Fibonacci Numbers
    Choo, Younseok
    [J]. JOURNAL OF INTEGER SEQUENCES, 2018, 21 (03)
  • [5] Alternating Sums of the Reciprocal Fibonacci Numbers
    Wang, Andrew Yezhou
    Yuan, Tingrui
    [J]. JOURNAL OF INTEGER SEQUENCES, 2017, 20 (01)
  • [6] ON THE RECIPROCAL SUMS OF SQUARE OF GENERALIZED BI-PERIODIC FIBONACCI NUMBERS
    Choi, Ginkyu
    Choo, Younseok
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 201 - 209
  • [7] ON CERTAIN FAMILIES OF FINITE RECIPROCAL SUMS THAT INVOLVE GENERALIZED FIBONACCI NUMBERS
    Melham, R. S.
    [J]. FIBONACCI QUARTERLY, 2015, 53 (04): : 323 - 334
  • [8] SUMS OF GENERALIZED FIBONACCI NUMBERS
    Cerin, Zvonko
    Gianella, Gian Mario
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (02): : 157 - 168
  • [9] On the reciprocal sums of the generalized Fibonacci sequences
    Zhang, Han
    Wu, Zhengang
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [10] On the reciprocal sums of the generalized Fibonacci sequences
    Han Zhang
    Zhengang Wu
    [J]. Advances in Difference Equations, 2013