On the reciprocal sums of the generalized Fibonacci sequences

被引:11
|
作者
Zhang, Han [1 ]
Wu, Zhengang [1 ]
机构
[1] Northwest Univ, Dept Math, Xian, Shaanxi, Peoples R China
关键词
generalized Fibonacci sequence; infinite sum; reciprocal sum; INFINITE SUM; PELL;
D O I
10.1186/1687-1847-2013-377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fibonacci sequence has been generalized in many ways. One of them is defined by the relation u(n) = au(n-1) + u(n-2) if n is even, u(n) = bu(n-1) + u(n-2) if n is odd, with initial values u(0) = 0 and u(1) = 1, where a and b are positive integers. In this paper, we consider the reciprocal sum of un and then establish some identities relating to parallel to(Sigma(infinity)(k=n)1/u(k)) (1)parallel to, where parallel to x parallel to denotes the nearest integer to x.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On the reciprocal sums of the generalized Fibonacci sequences
    Han Zhang
    Zhengang Wu
    [J]. Advances in Difference Equations, 2013
  • [2] On the Sums of Reciprocal Generalized Fibonacci Numbers
    Kuhapatanakul, Kantaphon
    [J]. JOURNAL OF INTEGER SEQUENCES, 2013, 16 (07)
  • [3] Alternating sums of reciprocal generalized Fibonacci numbers
    Kuhapatanakul, Kantaphon
    [J]. SPRINGERPLUS, 2014, 3
  • [4] On the alternating sums of reciprocal generalized Fibonacci numbers
    Ulutas, Yucel Turker
    Kuzuoglu, Gokhan
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (03)
  • [5] On the reciprocal products of generalized Fibonacci sequences
    Tingting Du
    Zhengang Wu
    [J]. Journal of Inequalities and Applications, 2022
  • [6] On the reciprocal products of generalized Fibonacci sequences
    Du, Tingting
    Wu, Zhengang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [7] DEDEKIND SUMS AND SOME GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Dilcher, Karl
    Meyer, Jeffrey L.
    [J]. FIBONACCI QUARTERLY, 2010, 48 (03): : 260 - 264
  • [8] Reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Lekata
    [J]. DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 77 - +
  • [9] ON THE RECIPROCAL SUMS OF SQUARE OF GENERALIZED BI-PERIODIC FIBONACCI NUMBERS
    Choi, Ginkyu
    Choo, Younseok
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 201 - 209
  • [10] ON CERTAIN FAMILIES OF FINITE RECIPROCAL SUMS THAT INVOLVE GENERALIZED FIBONACCI NUMBERS
    Melham, R. S.
    [J]. FIBONACCI QUARTERLY, 2015, 53 (04): : 323 - 334