The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition

被引:19
|
作者
Markopoulos, Panos P. [1 ]
Chachlakis, Dimitris G. [1 ]
Papalexakis, Evangelos E. [2 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
关键词
Data analysis; L1-norm; outliers; robust; tensors; TUCKER decomposition; TENSOR DECOMPOSITIONS; APPROXIMATIONS; ALGORITHMS;
D O I
10.1109/LSP.2018.2790901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter studies the rank-1 L1-norm-based TUCKER2 (L1-TUCKER2) decomposition of 3-way tensors. First, we prove that the problem is formally NP-hard. Then, we derive the first two algorithms in the literature for its exact solution. Our algorithms are accompanied by formal complexity analysis. Finally, we conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. In our numerical studies, L1-TUCKER2 outperforms (e.g., in tensor approximation) all the aforementioned counterparts when the processed data are outlier corrupted.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 50 条
  • [41] A CLUSTERING METHOD BASED ON THE L1-NORM
    JAJUGA, K
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 357 - 371
  • [42] L1-NORM BASED FUZZY CLUSTERING
    JAJUGA, K
    FUZZY SETS AND SYSTEMS, 1991, 39 (01) : 43 - 50
  • [43] A Laplacian approach to l1-norm minimization
    Bonifaci, Vincenzo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (02) : 441 - 469
  • [44] Bayesian L1-norm sparse learning
    Lin, Yuanqing
    Lee, Daniel D.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5463 - 5466
  • [45] ON THE LORENTZ CONJECTURES UNDER THE L1-NORM
    YE, MD
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1990, 11 (03) : 359 - 362
  • [46] Direction Finding with L1-norm Subspaces
    Markopoulos, P. P.
    Tsagkarakis, N.
    Pados, D. A.
    Karystinos, G. N.
    COMPRESSIVE SENSING III, 2014, 9109
  • [47] Uniqueness of the Minimal l1-Norm Solution to the Monotone Linear Complementarity Problem
    Zhang, Ting
    Jiang, Xiaoqin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [48] L1-Norm of Steinhaus chaos on the polydisc
    Weber, Michel J. G.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (02): : 473 - 483
  • [49] L1-NORM FIT OF A STRAIGHT LINE
    SADOVSKI, AN
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1974, 23 (02): : 244 - 248
  • [50] On a correlation coefficient based on the L1-norm
    Adriano Pareto
    Statistical Papers, 2024, 65 (9) : 5851 - 5871