Direction Finding with L1-norm Subspaces

被引:8
|
作者
Markopoulos, P. P. [1 ]
Tsagkarakis, N. [1 ]
Pados, D. A. [1 ]
Karystinos, G. N. [2 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
来源
COMPRESSIVE SENSING III | 2014年 / 9109卷
关键词
Dimensionality reduction; direction-of-arrival estimation; erroneous data; faulty measurements; jamming; L-1; norm; L-2; principal-component analysis; outlier resistance; subspace signal processing; MAXIMUM-LIKELIHOOD; WIDE-BAND; LOCALIZATION; MUSIC;
D O I
10.1117/12.2053049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional subspace-based signal direction-of-arrival estimation methods rely on the familiar L-2-norm-derived principal components (singular vectors) of the observed sensor-array data matrix. In this paper, for the first time in the literature, we find the L-1-norm maximum projection components of the observed data and search in their subspace for signal presence. We demonstrate that L-1-subspace direction-of-arrival estimation exhibits (i) similar performance to L-2 (usual singular-value/eigen-vector decomposition) direction-of-arrival estimation under normal nominal-data system operation and (ii) significant resistance to sporadic/occasional directional jamming and/or faulty measurements.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Face Recognition with L1-norm Subspaces
    Maritato, Federica
    Liu, Ying
    Colonnese, Stefania
    Pados, Dimitris A.
    COMPRESSIVE SENSING V: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2016, 9857
  • [2] Characterizing L1-Norm Best-Fit Subspaces
    Brooks, J. Paul
    Dula, Jose H.
    COMPRESSIVE SENSING VI: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2017, 10211
  • [3] FINDING APPROXIMATELY RANK-ONE SUBMATRICES WITH THE NUCLEAR NORM AND l1-NORM
    Xuan Vinh Doan
    Vavasis, Stephen
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2502 - 2540
  • [4] Direction-of-Arrival Estimation by L1-norm Principal Components
    Markopoulos, Panos P.
    Tsagkarakis, Nicholas
    Pados, Dimitris A.
    Karystinos, George N.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS AND TECHNOLOGY (PAST), 2016,
  • [5] Pruning filters with L1-norm and capped L1-norm for CNN compression
    Aakash Kumar
    Ali Muhammad Shaikh
    Yun Li
    Hazrat Bilal
    Baoqun Yin
    Applied Intelligence, 2021, 51 : 1152 - 1160
  • [6] Pruning filters with L1-norm and capped L1-norm for CNN compression
    Kumar, Aakash
    Shaikh, Ali Muhammad
    Li, Yun
    Bilal, Hazrat
    Yin, Baoqun
    APPLIED INTELLIGENCE, 2021, 51 (02) : 1152 - 1160
  • [7] On the Problem of Finding the Least Number of Features by L1-Norm Minimisation
    Klement, Sascha
    Martinetz, Thomas
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 315 - 322
  • [8] L1-norm Principal-Component Analysis in L2-norm-reduced-rank Data Subspaces
    Markopoulos, Panos P.
    Pados, Dimitris A.
    Karystinos, George N.
    Langberg, Michael
    COMPRESSIVE SENSING VI: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2017, 10211
  • [9] Notes on quantum coherence with l1-norm and convex-roof l1-norm
    Zhu, Jiayao
    Ma, Jian
    Zhang, Tinggui
    QUANTUM INFORMATION PROCESSING, 2021, 20 (12)
  • [10] l1-Norm Minimization With Regula Falsi Type Root Finding Methods
    Vural, Metin
    Aravkin, Aleksandr Y.
    Stanczak, Slawomir
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2132 - 2136