l1-Norm Minimization With Regula Falsi Type Root Finding Methods

被引:1
|
作者
Vural, Metin [1 ]
Aravkin, Aleksandr Y. [2 ]
Stanczak, Slawomir [3 ]
机构
[1] Tech Univ Berlin, D-10587 Berlin, Germany
[2] Univ Washington, Appl Math, Seattle, WA 98195 USA
[3] Fraunhofer Heinrich Hertz Inst, D-10587 Berlin, Germany
关键词
l(1)-norm minimization; nonconvex models; Regula-Falsi; root-finding; UNCERTAINTY PRINCIPLES; ROBUST;
D O I
10.1109/LSP.2021.3120327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse level-set formulations allow practitioners to find the minimum 1-norm solution subject to likelihood constraints. Prior art requires this constraint to be convex. Extending these approaches to nonconvex likelihood constraints enables outlier robust methods. In this letter, we develop an efficient approach for nonconvex likelihoods, using Regula Falsi root-finding techniques to solve the level-set formulation. Regula Falsi methods are simple, derivative-free and efficient. The approach provably extends level-set methods to the broader class of nonconvex inverse problems. Practical performance is illustrated using l(1)-regularized Student's t inversion, which is a nonconvex problem used to develop outlier-robust approaches.
引用
收藏
页码:2132 / 2136
页数:5
相关论文
共 50 条
  • [1] Blended Root Finding Algorithm Outperforms Bisection and Regula Falsi Algorithms
    Sabharwal, Chaman Lal
    [J]. MATHEMATICS, 2019, 7 (11)
  • [2] A Laplacian approach to l1-norm minimization
    Bonifaci, Vincenzo
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (02) : 441 - 469
  • [3] L1-NORM MINIMIZATION FOR OCTONION SIGNALS
    Wang, Rui
    Xiang, Guijun
    Zhang, Fagan
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 552 - 556
  • [4] Linearized alternating directions method for l1-norm inequality constrained l1-norm minimization
    Cao, Shuhan
    Xiao, Yunhai
    Zhu, Hong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 142 - 153
  • [5] Direction Finding with L1-norm Subspaces
    Markopoulos, P. P.
    Tsagkarakis, N.
    Pados, D. A.
    Karystinos, G. N.
    [J]. COMPRESSIVE SENSING III, 2014, 9109
  • [6] ORDER REDUCTION BY L1-NORM AND L00-NORM MINIMIZATION
    ELATTAR, RA
    VIDYASAGAR, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (04) : 731 - 734
  • [7] SPECTRAL ESTIMATION BY REPETITIVE L1-NORM MINIMIZATION
    MARTINELLI, G
    ORLANDI, G
    BURRASCANO, P
    [J]. PROCEEDINGS OF THE IEEE, 1986, 74 (03) : 523 - 524
  • [8] Distortionless Beamforming Optimized With l1-Norm Minimization
    Emura, Satoru
    Araki, Shoko
    Nakatani, Tomohiro
    Harada, Noboru
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (07) : 936 - 940
  • [9] ON THE CONVERGENCE OF A CLASS OF ITERATIONAL METHODS OF REGULA-FALSI-TYPE
    SHAPHIYEV, RA
    BABAYEVA, AE
    [J]. IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1979, (06): : 52 - 58
  • [10] NONLINEAR L1-NORM MINIMIZATION LEARNING FOR HUMAN DETECTION
    Xu, Ran
    Jiao, Jianbin
    Ye, Qixiang
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,