Direction Finding with L1-norm Subspaces

被引:8
|
作者
Markopoulos, P. P. [1 ]
Tsagkarakis, N. [1 ]
Pados, D. A. [1 ]
Karystinos, G. N. [2 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
来源
COMPRESSIVE SENSING III | 2014年 / 9109卷
关键词
Dimensionality reduction; direction-of-arrival estimation; erroneous data; faulty measurements; jamming; L-1; norm; L-2; principal-component analysis; outlier resistance; subspace signal processing; MAXIMUM-LIKELIHOOD; WIDE-BAND; LOCALIZATION; MUSIC;
D O I
10.1117/12.2053049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional subspace-based signal direction-of-arrival estimation methods rely on the familiar L-2-norm-derived principal components (singular vectors) of the observed sensor-array data matrix. In this paper, for the first time in the literature, we find the L-1-norm maximum projection components of the observed data and search in their subspace for signal presence. We demonstrate that L-1-subspace direction-of-arrival estimation exhibits (i) similar performance to L-2 (usual singular-value/eigen-vector decomposition) direction-of-arrival estimation under normal nominal-data system operation and (ii) significant resistance to sporadic/occasional directional jamming and/or faulty measurements.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Bayesian L1-norm sparse learning
    Lin, Yuanqing
    Lee, Daniel D.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5463 - 5466
  • [32] ORDER REDUCTION BY L1-NORM AND L00-NORM MINIMIZATION
    ELATTAR, RA
    VIDYASAGAR, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (04) : 731 - 734
  • [33] ON THE LORENTZ CONJECTURES UNDER THE L1-NORM
    YE, MD
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1990, 11 (03) : 359 - 362
  • [34] L1-Norm of Steinhaus chaos on the polydisc
    Weber, Michel J. G.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (02): : 473 - 483
  • [35] L1-NORM FIT OF A STRAIGHT LINE
    SADOVSKI, AN
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1974, 23 (02): : 244 - 248
  • [36] L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    IEEE ACCESS, 2019, 7 : 178454 - 178465
  • [37] On a correlation coefficient based on the L1-norm
    Adriano Pareto
    Statistical Papers, 2024, 65 (9) : 5851 - 5871
  • [38] FINDING THE LARGEST LOW-RANK CLUSTERS WITH KY FAN 2-k-NORM AND l1-NORM
    Xuan Vinh Doan
    Vavasis, Stephen
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 274 - 312
  • [39] GENERALIZED INVERSES UNDER THE L1-NORM
    DECHELA, DF
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 94 : 237 - 261
  • [40] A direct approach for L1-norm minimisation
    Mahboub, Vahid
    SURVEY REVIEW, 2024, 56 (397) : 407 - 411