The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition

被引:19
|
作者
Markopoulos, Panos P. [1 ]
Chachlakis, Dimitris G. [1 ]
Papalexakis, Evangelos E. [2 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
关键词
Data analysis; L1-norm; outliers; robust; tensors; TUCKER decomposition; TENSOR DECOMPOSITIONS; APPROXIMATIONS; ALGORITHMS;
D O I
10.1109/LSP.2018.2790901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter studies the rank-1 L1-norm-based TUCKER2 (L1-TUCKER2) decomposition of 3-way tensors. First, we prove that the problem is formally NP-hard. Then, we derive the first two algorithms in the literature for its exact solution. Our algorithms are accompanied by formal complexity analysis. Finally, we conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. In our numerical studies, L1-TUCKER2 outperforms (e.g., in tensor approximation) all the aforementioned counterparts when the processed data are outlier corrupted.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 50 条
  • [21] MRPP TESTS IN L1-NORM
    TRACY, DS
    KHAN, KA
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 373 - 380
  • [22] L1-norm quantile regression
    Li, Youjuan
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (01) : 163 - 185
  • [24] l1-norm coherence of assistance
    Zhao, Ming-Jing
    Ma, Teng
    Quan, Quan
    Fan, Heng
    Pereira, Rajesh
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [25] The L1-norm of a trigonometric sum
    Éminyan, KM
    MATHEMATICAL NOTES, 2004, 76 (1-2) : 124 - 132
  • [26] MONOSPLINES OF MINIMAL L1-NORM
    ZHENSYKBAEV, AA
    MATHEMATICAL NOTES, 1983, 33 (5-6) : 443 - 452
  • [27] The L1-Norm of a Trigonometric Sum
    K. M. Éminyan
    Mathematical Notes, 2004, 76 : 124 - 132
  • [28] On the concentration of measure and the L1-norm
    Malykhin, Yu. V.
    Ryutin, K. S.
    JOURNAL OF APPROXIMATION THEORY, 2013, 175 : 77 - 82
  • [29] Rank-One Matrix Completion With Automatic Rank Estimation via L1-Norm Regularization
    Shi, Qiquan
    Lu, Haiping
    Cheung, Yiu-Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) : 4744 - 4757
  • [30] Practical Low-Rank Matrix Approximation under Robust L1-Norm
    Zheng, Yinqiang
    Liu, Guangcan
    Sugimoto, Shigeki
    Yan, Shuicheng
    Okutomi, Masatoshi
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1410 - 1417