The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition

被引:19
|
作者
Markopoulos, Panos P. [1 ]
Chachlakis, Dimitris G. [1 ]
Papalexakis, Evangelos E. [2 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
关键词
Data analysis; L1-norm; outliers; robust; tensors; TUCKER decomposition; TENSOR DECOMPOSITIONS; APPROXIMATIONS; ALGORITHMS;
D O I
10.1109/LSP.2018.2790901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter studies the rank-1 L1-norm-based TUCKER2 (L1-TUCKER2) decomposition of 3-way tensors. First, we prove that the problem is formally NP-hard. Then, we derive the first two algorithms in the literature for its exact solution. Our algorithms are accompanied by formal complexity analysis. Finally, we conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. In our numerical studies, L1-TUCKER2 outperforms (e.g., in tensor approximation) all the aforementioned counterparts when the processed data are outlier corrupted.
引用
下载
收藏
页码:511 / 515
页数:5
相关论文
共 50 条
  • [31] Robust Decomposition of 3-way Tensors based on L1-norm
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    COMPRESSIVE SENSING VII: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2018, 10658
  • [32] L1-NORM HIGHER-ORDER SINGULAR-VALUE DECOMPOSITION
    Markopoulos, Panos P.
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1353 - 1357
  • [33] L1-Norm Low-Rank Matrix Factorization by Variational Bayesian Method
    Zhao, Qian
    Meng, Deyu
    Xu, Zongben
    Zuo, Wangmeng
    Yan, Yan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (04) : 825 - 839
  • [34] On the Complexity of Robust PCA and l1-Norm Low-Rank Matrix Approximation
    Gillis, Nicolas
    Vavasis, Stephen A.
    MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (04) : 1072 - 1084
  • [35] Fast Solution of l1-Norm Minimization Problems When the Solution May Be Sparse
    Donoho, David L.
    Tsaig, Yaakov
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 4789 - 4812
  • [36] L1-norm plus L2-norm sparse parameter for image recognition
    Feng, Qingxiang
    Zhu, Qi
    Tang, Lin-Lin
    Pan, Jeng-Shyang
    OPTIK, 2015, 126 (23): : 4078 - 4082
  • [37] Robust Tensor Analysis With L1-Norm
    Pang, Yanwei
    Li, Xuelong
    Yuan, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (02) : 172 - 178
  • [39] L1-NORM MINIMIZATION FOR OCTONION SIGNALS
    Wang, Rui
    Xiang, Guijun
    Zhang, Fagan
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 552 - 556
  • [40] Subspace Embeddings for the L1-norm with Applications
    Sohler, Christian
    Woodruff, David P.
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 755 - 764