Robust Tensor Analysis With L1-Norm

被引:163
|
作者
Pang, Yanwei [1 ]
Li, Xuelong [2 ]
Yuan, Yuan [3 ]
机构
[1] Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[3] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
基金
中国国家自然科学基金;
关键词
L1-norm; outlier; tensor analysis; APPEARANCE;
D O I
10.1109/TCSVT.2009.2020337
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tensor analysis plays an important role in modern image and vision computing problems. Most of the existing tensor analysis approaches are based on the Frobenius norm, which makes them sensitive to outliers. In this paper, we propose L1-norm-based tensor analysis (TPCA-L1), which is robust to outliers. Experimental results upon face and other datasets demonstrate the advantages of the proposed approach.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 50 条
  • [1] Robust Tensor Analysis with Non-Greedy l1-Norm Maximization
    Zhao, Limei
    Jia, Weimin
    Wang, Rong
    Yu, Qiang
    RADIOENGINEERING, 2016, 25 (01) : 200 - 207
  • [2] L1-NORM HIGHER-ORDER ORTHOGONAL ITERATIONS FOR ROBUST TENSOR ANALYSIS
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4826 - 4830
  • [3] L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    IEEE ACCESS, 2019, 7 : 178454 - 178465
  • [4] Dynamic L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Dhanaraj, Mayur
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 587 - 602
  • [5] THE PLACE OF THE L1-NORM IN ROBUST ESTIMATION
    HUBER, PJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 255 - 262
  • [6] Robust Dictionary Learning with Capped l1-Norm
    Jiang, Wenhao
    Nie, Feiping
    Huang, Heng
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3590 - 3596
  • [7] Inference robust to outliers with l1-norm penalization
    Beyhum, Jad
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 688 - 702
  • [8] An Improved Linear Discriminant Analysis with L1-norm for Robust Feature Extraction
    Chen, Xiaobo
    Yang, Jian
    Jin, Zhong
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1585 - 1590
  • [9] Conformity evaluation and L1-norm principal-component analysis of tensor data
    Tountas, Konstantinos
    Pados, Dimitris A.
    Medley, Michael J.
    BIG DATA: LEARNING, ANALYTICS, AND APPLICATIONS, 2019, 10989
  • [10] l1-NORM BASED NONPARAMETRIC AND SEMIPARAMETRIC APPROACHES FOR ROBUST SPECTRAL ANALYSIS
    Chen, Yuan
    So, H. C.
    Huang, Long-Ting
    Wang, Wen-Qin
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 308 - 311