Dynamic L1-Norm Tucker Tensor Decomposition

被引:14
|
作者
Chachlakis, Dimitris G. [1 ]
Dhanaraj, Mayur [1 ]
Prater-Bennette, Ashley [2 ]
Markopoulos, Panos P. [1 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] US Air Force, Res Lab, Informat Directorate, Rome, NY 13441 USA
基金
美国国家科学基金会;
关键词
Tensors; Principal component analysis; Signal processing algorithms; Standards; Pollution measurement; Heuristic algorithms; Approximation algorithms; Data analysis; L1-norm; outliers; robust; tensors; tucker decomposition;
D O I
10.1109/JSTSP.2021.3058846
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tucker decomposition is a standard method for processing multi-way (tensor) measurements and finds many applications in machine learning and data mining, among other fields. When tensor measurements arrive in a streaming fashion or are too many to jointly decompose, incremental Tucker analysis is preferred. In addition, dynamic adaptation of bases is desired when the nominal data subspaces change. At the same time, it has been documented that outliers in the data can significantly compromise the performance of existing methods for dynamic Tucker analysis. In this work, we present Dynamic L1-Tucker: an algorithm for dynamic and outlier-resistant Tucker analysis of tensor data. Our experimental studies on both real and synthetic datasets corroborate that the proposed method (i) attains high bases estimation performance, (ii) identifies/rejects outliers, and (iii) adapts to changes of the nominal subspaces.
引用
收藏
页码:587 / 602
页数:16
相关论文
共 50 条
  • [1] L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    [J]. IEEE ACCESS, 2019, 7 : 178454 - 178465
  • [2] The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition
    Markopoulos, Panos P.
    Chachlakis, Dimitris G.
    Papalexakis, Evangelos E.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (04) : 511 - 515
  • [3] L1-Norm RESCAL Decomposition
    Tsitsikas, Yorgos
    Chachlakis, Dimitris G.
    Papalexakis, Evangelos E.
    Markopoulos, Panos P.
    [J]. 2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 940 - 944
  • [4] Robust Tensor Analysis With L1-Norm
    Pang, Yanwei
    Li, Xuelong
    Yuan, Yuan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (02) : 172 - 178
  • [5] Background Subtraction via Exact Solution of Bayesian L1-norm Tensor Decomposition
    Kim, Taehyeon
    Choe, Yoonsik
    [J]. INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2020, 2020, 11515
  • [6] Low-rank matrix decomposition in L1-norm by dynamic systems
    Liu, Yiguang
    Liu, Bingbing
    Pu, Yifei
    Chen, Xiaohui
    Cheng, Hong
    [J]. IMAGE AND VISION COMPUTING, 2012, 30 (11) : 915 - 921
  • [7] Blind Unmixing of Hyperspectral Images Based on L1 Norm and Tucker Tensor Decomposition
    Sun, Le
    Guo, Huxiang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Pruning filters with L1-norm and capped L1-norm for CNN compression
    Kumar, Aakash
    Shaikh, Ali Muhammad
    Li, Yun
    Bilal, Hazrat
    Yin, Baoqun
    [J]. APPLIED INTELLIGENCE, 2021, 51 (02) : 1152 - 1160
  • [9] Pruning filters with L1-norm and capped L1-norm for CNN compression
    Aakash Kumar
    Ali Muhammad Shaikh
    Yun Li
    Hazrat Bilal
    Baoqun Yin
    [J]. Applied Intelligence, 2021, 51 : 1152 - 1160
  • [10] Notes on quantum coherence with l1-norm and convex-roof l1-norm
    Zhu, Jiayao
    Ma, Jian
    Zhang, Tinggui
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (12)