The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition

被引:19
|
作者
Markopoulos, Panos P. [1 ]
Chachlakis, Dimitris G. [1 ]
Papalexakis, Evangelos E. [2 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
关键词
Data analysis; L1-norm; outliers; robust; tensors; TUCKER decomposition; TENSOR DECOMPOSITIONS; APPROXIMATIONS; ALGORITHMS;
D O I
10.1109/LSP.2018.2790901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter studies the rank-1 L1-norm-based TUCKER2 (L1-TUCKER2) decomposition of 3-way tensors. First, we prove that the problem is formally NP-hard. Then, we derive the first two algorithms in the literature for its exact solution. Our algorithms are accompanied by formal complexity analysis. Finally, we conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. In our numerical studies, L1-TUCKER2 outperforms (e.g., in tensor approximation) all the aforementioned counterparts when the processed data are outlier corrupted.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 50 条
  • [1] NOVEL ALGORITHMS FOR EXACT AND EFFICIENT L1-NORM-BASED TUCKER2 DECOMPOSITION
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6294 - 6298
  • [2] L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    [J]. IEEE ACCESS, 2019, 7 : 178454 - 178465
  • [3] Dynamic L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Dhanaraj, Mayur
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 587 - 602
  • [4] Background Subtraction via Exact Solution of Bayesian L1-norm Tensor Decomposition
    Kim, Taehyeon
    Choe, Yoonsik
    [J]. INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2020, 2020, 11515
  • [5] L1-Norm RESCAL Decomposition
    Tsitsikas, Yorgos
    Chachlakis, Dimitris G.
    Papalexakis, Evangelos E.
    Markopoulos, Panos P.
    [J]. 2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 940 - 944
  • [6] Low-rank matrix decomposition in L1-norm by dynamic systems
    Liu, Yiguang
    Liu, Bingbing
    Pu, Yifei
    Chen, Xiaohui
    Cheng, Hong
    [J]. IMAGE AND VISION COMPUTING, 2012, 30 (11) : 915 - 921
  • [7] L1-Norm Low-Rank Matrix Decomposition by Neural Networks and Mollifiers
    Liu, Yiguang
    Yang, Songfan
    Wu, Pengfei
    Li, Chunguang
    Yang, Menglong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (02) : 273 - 283
  • [8] On the L1-norm Approximation of a Matrix by Another of Lower Rank
    Tsagkarakis, Nicholas
    Markopoulos, Panos P.
    Pados, Dimitris A.
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 768 - 773
  • [9] Low Rank Approximation with Entrywise l1-Norm Error
    Song, Zhao
    Woodruff, David P.
    Zhong, Peilin
    [J]. STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 688 - 701
  • [10] Pruning filters with L1-norm and capped L1-norm for CNN compression
    Kumar, Aakash
    Shaikh, Ali Muhammad
    Li, Yun
    Bilal, Hazrat
    Yin, Baoqun
    [J]. APPLIED INTELLIGENCE, 2021, 51 (02) : 1152 - 1160