Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

被引:0
|
作者
Zhang, Yizhe [1 ]
Wang, Xiangyu [1 ]
Chen, Changyou [1 ]
Henao, Ricardo [1 ]
Fan, Kai [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Durham, NC 27708 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016) | 2016年 / 29卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling, demonstrating their connection via the Hamiltonian-Jacobi equation from Hamiltonian mechanics. This insight enables extension of HMC and slice sampling to a broader family of samplers, called Monomial Gamma Samplers (MGS). We provide a theoretical analysis of the mixing performance of such samplers, proving that in the limit of a single parameter, the MGS draws decorrelated samples from the desired target distribution. We further show that as this parameter tends toward this limit, performance gains are achieved at a cost of increasing numerical difficulty and some practical convergence issues. Our theoretical results are validated with synthetic data and real-world applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Exponential Integration for Hamiltonian Monte Carlo
    Chao, Wei-Lun
    Solomon, Justin
    Michels, Dominik L.
    Sha, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1142 - 1151
  • [42] Couplings for Multinomial Hamiltonian Monte Carlo
    Xu, Kai
    Fjelde, Tor Erlend
    Sutton, Charles
    Ge, Hong
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [43] The geometric foundations of Hamiltonian Monte Carlo
    Betancourt, Michael
    Byrne, Simon
    Livingstone, Sam
    Girolami, Mark
    BERNOULLI, 2017, 23 (4A) : 2257 - 2298
  • [44] Learning Hamiltonian Monte Carlo in R
    Thomas, Samuel
    Tu, Wanzhu
    AMERICAN STATISTICIAN, 2021, 75 (04): : 403 - 413
  • [45] Shadow Manifold Hamiltonian Monte Carlo
    van der Heide, Chris
    Hodgkinson, Liam
    Roosta, Fred
    Kroese, Dirk P.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [46] Stochastic Gradient Hamiltonian Monte Carlo
    Chen, Tianqi
    Fox, Emily B.
    Guestrin, Carlos
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1683 - 1691
  • [47] Reflection, Refraction, and Hamiltonian Monte Carlo
    Afshar, Hadi Mohasel
    Domke, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [48] Quantum dynamical Hamiltonian Monte Carlo
    Lockwood, Owen
    Weiss, Peter
    Aronshtein, Filip
    Verdon, Guillaume
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [49] Stochastic approximation Hamiltonian Monte Carlo
    Yun, Jonghyun
    Shin, Minsuk
    Hoon Jin, Ick
    Liang, Faming
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3135 - 3156
  • [50] Unbiased Hamiltonian Monte Carlo with couplings
    Heng, J.
    Jacob, P. E.
    BIOMETRIKA, 2019, 106 (02) : 287 - 302