Unbiased Hamiltonian Monte Carlo with couplings

被引:34
|
作者
Heng, J. [1 ]
Jacob, P. E. [2 ]
机构
[1] ESSEC Business Sch, 5 Nepal Pk, Singapore 139408, Singapore
[2] Harvard Univ, Dept Stat, 1 Oxford St, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Coupling; Hamiltonian Monte Carlo method; Parallel computing; Unbiased estimation; REGENERATION; CONVERGENCE; LANGEVIN;
D O I
10.1093/biomet/asy074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method for parallelization of Hamiltonian Monte Carlo estimators. Our approach involves constructing a pair of Hamiltonian Monte Carlo chains that are coupled in such away that they meet exactly after some random number of iterations. These chains can then be combined so that the resulting estimators are unbiased. This allows us to produce independent replicates in parallel and average them to obtain estimators that are consistent in the limit of the number of replicates, rather than in the usual limit of the number of Markov chain iterations. We investigate the scalability of our coupling in high dimensions on a toy example. The choice of algorithmic parameters and the efficiency of our proposed approach are then illustrated on a logistic regression with 300 covariates and a log-Gaussian Cox point processes model with low- to fine-grained discretizations.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 50 条
  • [1] Unbiased Hamiltonian Monte Carlo with couplings (vol 106, pg 287, 2019)
    Heng, J.
    Jacob, P. E.
    [J]. BIOMETRIKA, 2020, 107 (03) : 769 - 769
  • [2] Couplings for Multinomial Hamiltonian Monte Carlo
    Xu, Kai
    Fjelde, Tor Erlend
    Sutton, Charles
    Ge, Hong
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [3] Unbiased Markov chain Monte Carlo methods with couplings
    Jacob, Pierre E.
    O'Leary, John
    Atchade, Yves F.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (03) : 543 - 600
  • [4] Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
    Noble, Maxence
    De Bortoli, Valentin
    Durmus, Alain Oliviero
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [6] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [7] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    [J]. PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [8] Unbiased Estimators and Multilevel Monte Carlo
    Vihola, Matti
    [J]. OPERATIONS RESEARCH, 2018, 66 (02) : 448 - 462
  • [9] On the existence of unbiased Monte Carlo estimators
    Mathe, P
    [J]. JOURNAL OF APPROXIMATION THEORY, 1996, 85 (01) : 1 - 15
  • [10] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70