Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

被引:0
|
作者
Zhang, Yizhe [1 ]
Wang, Xiangyu [1 ]
Chen, Changyou [1 ]
Henao, Ricardo [1 ]
Fan, Kai [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Durham, NC 27708 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016) | 2016年 / 29卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling, demonstrating their connection via the Hamiltonian-Jacobi equation from Hamiltonian mechanics. This insight enables extension of HMC and slice sampling to a broader family of samplers, called Monomial Gamma Samplers (MGS). We provide a theoretical analysis of the mixing performance of such samplers, proving that in the limit of a single parameter, the MGS draws decorrelated samples from the desired target distribution. We further show that as this parameter tends toward this limit, performance gains are achieved at a cost of increasing numerical difficulty and some practical convergence issues. Our theoretical results are validated with synthetic data and real-world applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Robust Abrupt Motion Tracking via Adaptive Hamiltonian Monte Carlo Sampling
    Wang, Fasheng
    Li, Xucheng
    Lu, Mingyu
    Xiao, Zhibo
    PRICAI 2014: TRENDS IN ARTIFICIAL INTELLIGENCE, 2014, 8862 : 52 - 63
  • [22] Implementing the Hamiltonian Monte Carlo Sampling Algorithm in Stochastic Assessment of Power Systems
    Reis, Diogo J. F.
    Pessanha, Jose E. O.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (02) : 522 - 530
  • [23] Robust abrupt motion tracking via adaptive hamiltonian monte carlo sampling
    Wang, Fasheng
    Li, Xucheng
    Lu, Mingyu
    Xiao, Zhibo
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8862 : 52 - 63
  • [24] Unifying Orthogonal Monte Carlo Methods
    Choromanski, Krzysztof
    Rowland, Mark
    Chen, Wenyu
    Weller, Adrian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [25] Split Hamiltonian Monte Carlo
    Shahbaba, Babak
    Lan, Shiwei
    Johnson, Wesley O.
    Neal, Radford M.
    STATISTICS AND COMPUTING, 2014, 24 (03) : 339 - 349
  • [26] Nonparametric Hamiltonian Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [27] Microcanonical Hamiltonian Monte Carlo
    Robnik, Jakob
    De Luca, G. Bruno
    Silverstein, Eva
    Seljak, Uros
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [28] CONSERVATIVE HAMILTONIAN MONTE CARLO
    McGregor, Geoffrey
    Wan, Andy T.S.
    arXiv, 2022,
  • [29] Hamiltonian Monte Carlo Swindles
    Piponi, Dan
    Hoffman, Matthew D.
    Sountsov, Pavel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3774 - 3782
  • [30] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2159 - 2194