Markov chain Monte Carlo;
Hamiltonian dynamics;
Bayesian analysis;
D O I:
10.1007/s11222-012-9373-1
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
We show how the Hamiltonian Monte Carlo algorithm can sometimes be speeded up by "splitting" the Hamiltonian in a way that allows much of the movement around the state space to be done at low computational cost. One context where this is possible is when the log density of the distribution of interest (the potential energy function) can be written as the log of a Gaussian density, which is a quadratic function, plus a slowly-varying function. Hamiltonian dynamics for quadratic energy functions can be analytically solved. With the splitting technique, only the slowly-varying part of the energy needs to be handled numerically, and this can be done with a larger stepsize (and hence fewer steps) than would be necessary with a direct simulation of the dynamics. Another context where splitting helps is when the most important terms of the potential energy function and its gradient can be evaluated quickly, with only a slowly-varying part requiring costly computations. With splitting, the quick portion can be handled with a small stepsize, while the costly portion uses a larger stepsize. We show that both of these splitting approaches can reduce the computational cost of sampling from the posterior distribution for a logistic regression model, using either a Gaussian approximation centered on the posterior mode, or a Hamiltonian split into a term that depends on only a small number of critical cases, and another term that involves the larger number of cases whose influence on the posterior distribution is small.
机构:
Univ Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
Univ Jaume 1, IMAC, E-12071 Castellon de La Plana, SpainUniv Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
Casas, Fernando
Sanz-Serna, Jesus Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Matemat, E-28911 Leganes, SpainUniv Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
Sanz-Serna, Jesus Maria
Shaw, Luke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
Univ Jaume 1, IMAC, E-12071 Castellon de La Plana, SpainUniv Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
机构:
Département de Physique, Université Laval, Québec, Que. G1K 7P4, CanadaDépartement de Physique, Université Laval, Québec, Que. G1K 7P4, Canada
Jirari, H.
Kröger, H.
论文数: 0引用数: 0
h-index: 0
机构:
Département de Physique, Université Laval, Québec, Que. G1K 7P4, CanadaDépartement de Physique, Université Laval, Québec, Que. G1K 7P4, Canada
Kröger, H.
Luo, X.Q.
论文数: 0引用数: 0
h-index: 0
机构:
CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
Department of Physics, Zhongshan University, Guangzhou 510275, China
Center for Computational Physics, Sch. of Phys. Sci. and Engineering, Zhongshan University, Guangzhou 510275, ChinaDépartement de Physique, Université Laval, Québec, Que. G1K 7P4, Canada
机构:
Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USAUniv Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
Robnik, Jakob
De Luca, G. Bruno
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USAUniv Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
De Luca, G. Bruno
论文数: 引用数:
h-index:
机构:
Silverstein, Eva
Seljak, Uros
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USAUniv Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
机构:
Department of Mathematics and Statistics, University of Northern British Columbia, Prince George,BC, CanadaDepartment of Mathematics and Statistics, University of Northern British Columbia, Prince George,BC, Canada
McGregor, Geoffrey
Wan, Andy T.S.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics and Statistics, University of Northern British Columbia, Prince George,BC, CanadaDepartment of Mathematics and Statistics, University of Northern British Columbia, Prince George,BC, Canada