Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

被引:0
|
作者
Zhang, Yizhe [1 ]
Wang, Xiangyu [1 ]
Chen, Changyou [1 ]
Henao, Ricardo [1 ]
Fan, Kai [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Durham, NC 27708 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016) | 2016年 / 29卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling, demonstrating their connection via the Hamiltonian-Jacobi equation from Hamiltonian mechanics. This insight enables extension of HMC and slice sampling to a broader family of samplers, called Monomial Gamma Samplers (MGS). We provide a theoretical analysis of the mixing performance of such samplers, proving that in the limit of a single parameter, the MGS draws decorrelated samples from the desired target distribution. We further show that as this parameter tends toward this limit, performance gains are achieved at a cost of increasing numerical difficulty and some practical convergence issues. Our theoretical results are validated with synthetic data and real-world applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Wormhole Hamiltonian Monte Carlo
    Lan, Shiwei
    Streets, Jeffrey
    Shahbaba, Babak
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1953 - 1959
  • [32] Adaptive Tuning of Hamiltonian Monte Carlo Within Sequential Monte Carlo
    Buchholz, Alexander
    Chopin, Nicolas
    Jacob, Pierre E.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 745 - 771
  • [33] Robust Monte Carlo Sampling using Riemannian Nose-Poincare Hamiltonian Dynamics
    Roychowdhury, Anirban
    Kulis, Brian
    Parthasarathy, Srinivasan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [34] Multi-stage splitting integrators for sampling with modified Hamiltonian Monte Carlo methods
    Radivojevic, Tijana
    Fernandez-Pendas, Mario
    Maria Sanz-Serna, Jesus
    Akhmatskaya, Elena
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 : 900 - 916
  • [35] Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte Carlo
    Chalkis, Apostolos
    Fisikopoulos, Vissarion
    Papachristou, Marios
    Tsigaridas, Elias
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (02):
  • [36] On the geometric ergodicity of Hamiltonian Monte Carlo
    Livingstone, Samuel
    Betancourt, Michael
    Byrne, Simon
    Girolami, Mark
    BERNOULLI, 2019, 25 (4A) : 3109 - 3138
  • [37] Split Hamiltonian Monte Carlo revisited
    Fernando Casas
    Jesús María Sanz-Serna
    Luke Shaw
    Statistics and Computing, 2022, 32
  • [38] On Lq convergence of the Hamiltonian Monte Carlo
    Ghosh, Soumyadip
    Lu, Yingdong
    Nowicki, Tomasz
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 161 - 169
  • [39] Split Hamiltonian Monte Carlo revisited
    Casas, Fernando
    Sanz-Serna, Jesus Maria
    Shaw, Luke
    STATISTICS AND COMPUTING, 2022, 32 (05)
  • [40] Stochastic Fractional Hamiltonian Monte Carlo
    Ye, Nanyang
    Zhu, Zhanxing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3019 - 3025