ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 < p(x) < 1

被引:0
|
作者
Bandaliev, R. A. [1 ,2 ]
Hasanov, S. G. [1 ,3 ]
机构
[1] ANAS, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Gandja State Univ, Gandja, Azerbaijan
关键词
L-p(x) spaces; denseness; potential type identity approximations; modular inequality; compactness; SPACES; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove the denseness of C-0(infinity)(Omega) in L-p(x) (Omega)for 0 < p(x) < 1. We construct a family of potential type identity approximations and prove a modular inequality in L-p(x) (Omega)for 0 < p(x) < 1. As an application we prove an analogue of the Kolmogorov Riesz type compactness theorem in L-p(x)(Omega) for 0 < p(x) < 1.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条