ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 < p(x) < 1

被引:0
|
作者
Bandaliev, R. A. [1 ,2 ]
Hasanov, S. G. [1 ,3 ]
机构
[1] ANAS, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Gandja State Univ, Gandja, Azerbaijan
关键词
L-p(x) spaces; denseness; potential type identity approximations; modular inequality; compactness; SPACES; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove the denseness of C-0(infinity)(Omega) in L-p(x) (Omega)for 0 < p(x) < 1. We construct a family of potential type identity approximations and prove a modular inequality in L-p(x) (Omega)for 0 < p(x) < 1. As an application we prove an analogue of the Kolmogorov Riesz type compactness theorem in L-p(x)(Omega) for 0 < p(x) < 1.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Solutions of an infinite system of integral equations of Volterra-Stieltjes type in the sequence spaces lp(1 &lt; p &lt; ∞) and c0
    Samadi, Ayub
    Avini, M. Mosaee
    Mursaleen, M.
    AIMS MATHEMATICS, 2020, 5 (04): : 3791 - 3808
  • [22] The Spectrum and Fine Spectrum of q-Cesaro Matrices with 0 &lt; q &lt; 1 on c0
    Yildirim, Merve Esra
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (03) : 361 - 377
  • [23] ON UNCONDITIONAL AND ABSOLUTE CONVERGENCE OF THE HAAR SERIES IN THE METRIC OF Lp[0,1] WITH 0 &lt; p &lt; 1
    Grigoryan, M. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (04) : 607 - 615
  • [24] Adaptive Lp (0 &lt; p &lt; 1) Regularization: Oracle Property and Applications
    Shi, Yunxiao
    He, Xiangnan
    Wu, Han
    Jin, Zhong-Xiao
    Lu, Wenlian
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 13 - 23
  • [25] Quasi-greedy bases in lp(0 &lt; p &lt; 1) are democratic
    Albiac, Fernando
    Ansorena, Jose L.
    Wojtaszczyk, Przemyslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [26] On moduli of smoothness and Fourier multipliers in Lp , 0 &lt; p&lt; 1
    Kolomoitsev Yu.S.
    Ukrainian Mathematical Journal, 2007, 59 (9) : 1364 - 1384
  • [27] Bandgap engineering of Cd1-xZnxTe1-ySey(0 &lt; x &lt;0.27, 0 &lt; y &lt; 0.026)
    Park, Beomjun
    Kim, Yonghoon
    Seo, Jiwon
    Byun, Jangwon
    Dedic, V.
    Franc, J.
    Bolotnikov, A. E.
    James, Ralph B.
    Kim, Kihyun
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1036
  • [28] Haar approximation from within for Lp(Rd), 0 &lt; p &lt; 1
    Benedetto, John J.
    Njeunje, Franck Olivier Ndjakou
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2021, 19 (01):
  • [29] On the Lp dual Minkowski problem for-1&lt;p&lt;0
    Mui, Stephanie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [30] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)