ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 < p(x) < 1

被引:0
|
作者
Bandaliev, R. A. [1 ,2 ]
Hasanov, S. G. [1 ,3 ]
机构
[1] ANAS, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Gandja State Univ, Gandja, Azerbaijan
关键词
L-p(x) spaces; denseness; potential type identity approximations; modular inequality; compactness; SPACES; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove the denseness of C-0(infinity)(Omega) in L-p(x) (Omega)for 0 < p(x) < 1. We construct a family of potential type identity approximations and prove a modular inequality in L-p(x) (Omega)for 0 < p(x) < 1. As an application we prove an analogue of the Kolmogorov Riesz type compactness theorem in L-p(x)(Omega) for 0 < p(x) < 1.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Unconditionality of general Franklin systems in Lp[0,1], 1 &lt; p &lt; ∞
    Gevorkyan, GG
    Kamont, A
    STUDIA MATHEMATICA, 2004, 164 (02) : 161 - 204
  • [32] Actions of S on C0(X) and ideals of C0(X) xα S
    Shourijeh, B. Tabatabaie
    Zebarjad, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 199 - 203
  • [33] Approximation of Fourier series in terms of functions in Lp Spaces for 0 &lt; p &lt; 1
    Aboud, Sahab Mohsen
    Bhaya, Eman Samir
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 897 - 911
  • [34] Continuity of the solution to the even Lp Minkowski problem for 0 &lt; p &lt; 1 in the plane
    Wang, Hejun
    Lv, Yusha
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (12)
  • [35] lp-Regularized Least Squares (0 &lt; p &lt; 1) and Critical Path
    Yukawa, Masahiro
    Amari, Shun-Ichi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 488 - 502
  • [36] The Orlicz version of the Lp Minkowski problem for -n &lt; p &lt; 0
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [37] Lp - Bounds for the Krein Spectral Shift Function: 0 &lt; p &lt; ∞
    Pliev, M.
    Sukochev, F.
    Zanin, D.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (04) : 491 - 499
  • [38] Uniqueness of the unconditional basis of l1 (lp) and lp(l1), 0 &lt; p &lt; 1
    Albiac, F
    Kalton, N
    Leránoz, C
    POSITIVITY, 2004, 8 (04) : 443 - 454
  • [39] The Lp Minkowski Problem for Polytopes for p &lt; 0
    Zhu, Guangxian
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (04) : 1333 - 1350
  • [40] Factorization of operator valued Lp for 0≤p&lt;1
    Mezrag, L
    MATHEMATISCHE NACHRICHTEN, 2004, 266 : 60 - 67