ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 < p(x) < 1

被引:0
|
作者
Bandaliev, R. A. [1 ,2 ]
Hasanov, S. G. [1 ,3 ]
机构
[1] ANAS, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Gandja State Univ, Gandja, Azerbaijan
关键词
L-p(x) spaces; denseness; potential type identity approximations; modular inequality; compactness; SPACES; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove the denseness of C-0(infinity)(Omega) in L-p(x) (Omega)for 0 < p(x) < 1. We construct a family of potential type identity approximations and prove a modular inequality in L-p(x) (Omega)for 0 < p(x) < 1. As an application we prove an analogue of the Kolmogorov Riesz type compactness theorem in L-p(x)(Omega) for 0 < p(x) < 1.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] The Gelfand widths of lp-balls for 0 &lt; p ≤ 1
    Foucart, Simon
    Pajor, Alain
    Rauhut, Holger
    Ullrich, Tino
    JOURNAL OF COMPLEXITY, 2010, 26 (06) : 629 - 640
  • [43] ON BANACH IDEALS SATISFYING c0(A(X, Y)) = A(X, c0(Y))
    Delgado, J. M.
    Pineiro, C.
    MATHEMATICA SCANDINAVICA, 2008, 103 (01) : 130 - 140
  • [44] Phase Diagram of Olivine NaxFePO4 (0 &lt; x &lt; 1)
    Lu, Jiechen
    Chung, Sai Cheong
    Nishimura, Shin-ichi
    Yamada, Atsuo
    CHEMISTRY OF MATERIALS, 2013, 25 (22) : 4557 - 4565
  • [45] lp-Constrained Least Squares (0 &lt; p &lt; 1) and Its Critical Path
    Yukawa, Masahiro
    Amari, Shun-ichi
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [46] A General-Thresholding Solution for lp(0 &lt; p &lt; 1) Regularized CT Reconstruction
    Miao, Chuang
    Yu, Hengyong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5455 - 5468
  • [47] On the bounded approximation property on subspaces of lp when 0 &lt; p &lt; 1 and related issues
    Cabello Sanchez, Felix
    Castillo, Jesus M. F.
    Moreno, Yolanda
    FORUM MATHEMATICUM, 2019, 31 (06) : 1533 - 1556
  • [48] Enhancing sparsity via lP (0 &lt; p &lt; 1) minimization for robust face recognition
    Guo, Song
    Wang, Zhan
    Ruan, Qiuqi
    NEUROCOMPUTING, 2013, 99 : 592 - 602
  • [49] Banach spaces embedding isometrically into Lp when 0&lt;p&lt;1
    Kalton, NJ
    Koldobsky, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 67 - 76
  • [50] Embeddability of Snowflaked Metrics with Applications to the Nonlinear Geometry of the Spaces Lp and lp for 0 &lt; p &lt; ∞
    Albiac, F.
    Baudier, F.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (01) : 1 - 24