Spaceability of sets in Lp x Lq and C0 x C0

被引:2
|
作者
Glab, S. [1 ]
Strobin, F. [1 ]
机构
[1] Lodz Univ Technol, Inst Math, Wolczanska 215, PL-93005 Lodz, Poland
关键词
Spaceability; L-p spaces; Porosity; Banach spaces of continuous functions; The L-p conjecture; Convolution; POROSITY; LINEABILITY; DICHOTOMIES; SPACE;
D O I
10.1016/j.jmaa.2016.03.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset E of an infinitely dimensional linearly-topological space X is called spaceable if there is an infinitely dimensional closed subspace Y of X with Y subset of E boolean OR {0}. The main aim of the paper is to show the spaceability of the following sets: 1. the set of those (f,g) E L-p x L-q for which fg is an element of (r) rovided that one of the following conditions holds: (a) 0 < 1/p + 1/q < 1/q and sup{mu(A) : mu(A) < infinity } = infinity (b) 1/p + 1/q > 1/r adn inf {mu(A) : mu(A) > 0 2. the set of those (f, g) E Co x Co for which f g is not integrable, where Co is the space of continuous mappings which vanish at infinity; 3. the set of those (f, g) E LP(G) x Lq(G) for which the convolution f * g is not well-defined or is equal to no provided G is a locally compact but non -compact topological group and p, q > 1 with 1/p -I- 1/q < 1. The paper can be considered as a continuation of our previous ones in which we studied these sets from the Baire category and o" -porosity points of view. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:451 / 465
页数:15
相关论文
共 50 条
  • [1] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)
  • [2] Actions of S on C0(X) and ideals of C0(X) xα S
    Shourijeh, B. Tabatabaie
    Zebarjad, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 199 - 203
  • [3] ON BANACH IDEALS SATISFYING c0(A(X, Y)) = A(X, c0(Y))
    Delgado, J. M.
    Pineiro, C.
    MATHEMATICA SCANDINAVICA, 2008, 103 (01) : 130 - 140
  • [4] How far is C0(Γ, X) with Γ discrete from C0(K, X) spaces?
    Candido, Leandro
    Galego, Eloi Medina
    FUNDAMENTA MATHEMATICAE, 2012, 218 (02) : 151 - 163
  • [5] On embeddings of C0(K) spaces into C0(L, X) spaces
    Candido, Leandro
    STUDIA MATHEMATICA, 2016, 232 (01) : 1 - 6
  • [6] ON NUCLEAR AND MULTIPLE SUMMING BILINEAR OPERATORS ON c0 x c0
    Badea, Gabriela
    QUAESTIONES MATHEMATICAE, 2010, 33 (02) : 253 - 261
  • [7] OPERATORS ON C0(L, X) WHOSE RANGE DOES NOT CONTAIN c0
    Talponen, Jarno
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 515 - 520
  • [8] ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 &lt; p(x) &lt; 1
    Bandaliev, R. A.
    Hasanov, S. G.
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (01) : 1 - 13
  • [9] Embedding c0 in bvca(Σ, X)
    J. C. Ferrando
    L. M. Sánchez Ruiz
    Czechoslovak Mathematical Journal, 2007, 57 : 679 - 688
  • [10] NONNEGATIVE PROJECTIONS ON C0(X)
    SEEVER, GL
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 17 (01) : 159 - &