A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data

被引:5
|
作者
Liu, Wei [1 ]
Wu, Lang [2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1016/j.csda.2008.06.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semiparametric nonlinear mixed-effects (NLME) models are very flexible in modeling long-term HIV viral dynamics. In practice, statistical analyses are often complicated due to measurement errors and missing data in covariates and non-ignorable missing data in the responses. We consider likelihood methods which simultaneously address measurement error and missing data problems. A real dataset is analyzed in detail, and a simulation study is conducted to evaluate the methods. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 50 条
  • [31] A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data
    Gao, SJ
    STATISTICS IN MEDICINE, 2004, 23 (02) : 211 - 219
  • [32] Mediation Analysis in Categorical Variables under Non-Ignorable Missing Data Mechanisms
    Sarah Ayoku
    Haresh Rochani
    Hani Samawi
    Jingjing Yin
    Journal of Statistical Theory and Practice, 2023, 17
  • [33] Mediation Analysis in Categorical Variables under Non-Ignorable Missing Data Mechanisms
    Ayoku, Sarah
    Rochani, Haresh
    Samawi, Hani
    Yin, Jingjing
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (04)
  • [34] Bayesian analysis of mixtures in structural equation models with non-ignorable missing data
    Cai, Jing-Heng
    Song, Xin-Yuan
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2010, 63 (03): : 491 - 508
  • [35] Non-response models for the analysis of non-monotone non-ignorable missing data
    Robins, JM
    STATISTICS IN MEDICINE, 1997, 16 (1-3) : 21 - 37
  • [36] A Bayesian model for longitudinal count data with non-ignorable dropout
    Kaciroti, Niko A.
    Raghunathan, Trivellore E.
    Schork, M. Anthony
    Clark, Noreen M.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 521 - 534
  • [37] Adjacency-based regularization for partially ranked data with non-ignorable missing
    Nakamura, Kento
    Yano, Keisuke
    Komaki, Fumiyasu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 145 (145)
  • [38] Model parameters estimation with non-ignorable missing data using influential exponential tilting resampling approach
    Gohil, Kavita
    Samawi, Hani
    Rochani, Haresh
    Yu, Lili
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 163 - 174
  • [39] Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model
    Sattar, Abdus
    Weissfeld, Lisa A.
    Molenberghs, Geert
    STATISTICS IN MEDICINE, 2011, 30 (27) : 3167 - 3180
  • [40] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)