A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data

被引:39
|
作者
Gao, SJ [1 ]
机构
[1] Indiana Univ, Sch Med, Dept Med, Div Biostat, Indianapolis, IN 46202 USA
关键词
D O I
10.1002/sim.1710
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A significant source of missing data in longitudinal epidemiologic studies on elderly individuals is death. It is generally believed that these missing data by death are non-ignorable to likelihood based inference. Inference based on data only from surviving participants in the study may lead to biased results. In this paper we model both the probability of disease and the probability of death using shared random effect parameters. We also propose to use the Laplace approximation for obtaining an approximate likelihood function so that high dimensional integration over the distributions of the random effect parameters is not necessary. Parameter estimates can be obtained by maximizing the approximate log-likelihood function. Data from a longitudinal dementia study will be used to illustrate the approach. A small simulation is conducted to compare parameter estimates from the proposed method to the 'naive' method where missing data is considered at random. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:211 / 219
页数:9
相关论文
共 50 条
  • [1] Longitudinal data analysis with non-ignorable missing data
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 205 - 220
  • [2] Analysis of longitudinal data with non-ignorable non-monotone missing values
    Troxel, AB
    Harrington, DP
    Lipsitz, SR
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 : 425 - 438
  • [3] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Tian Li
    Julian M. Somers
    Xiaoqiong J. Hu
    Lawrence C. McCandless
    [J]. Statistics in Biosciences, 2019, 11 : 184 - 205
  • [4] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Li, Tian
    Somers, Julian M.
    Hu, Xiaoqiong J.
    McCandless, Lawrence C.
    [J]. STATISTICS IN BIOSCIENCES, 2019, 11 (01) : 184 - 205
  • [5] A Latent Variable Model with Non-Ignorable Missing Data
    Takahiro Hoshino
    [J]. Behaviormetrika, 2005, 32 (1) : 71 - 93
  • [6] Analysing censored longitudinal data with non-ignorable missing values: depression in older age
    Falcaro, Milena
    Pendleton, Neil
    Pickles, Andrew
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2013, 176 (02) : 415 - 430
  • [7] Robust inference for longitudinal data analysis with non-ignorable and non-monotonic missing values
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICS AND ITS INTERFACE, 2012, 5 (04) : 479 - 490
  • [8] Empirical likelihood method for non-ignorable missing data problems
    Zhong Guan
    Jing Qin
    [J]. Lifetime Data Analysis, 2017, 23 : 113 - 135
  • [9] Estimating the incidence of dementia from two-phase sampling with non-ignorable missing data
    Gao, S
    Hui, SL
    [J]. STATISTICS IN MEDICINE, 2000, 19 (11-12) : 1545 - 1554
  • [10] Empirical likelihood method for non-ignorable missing data problems
    Guan, Zhong
    Qin, Jing
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (01) : 113 - 135