A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data

被引:5
|
作者
Liu, Wei [1 ]
Wu, Lang [2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1016/j.csda.2008.06.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semiparametric nonlinear mixed-effects (NLME) models are very flexible in modeling long-term HIV viral dynamics. In practice, statistical analyses are often complicated due to measurement errors and missing data in covariates and non-ignorable missing data in the responses. We consider likelihood methods which simultaneously address measurement error and missing data problems. A real dataset is analyzed in detail, and a simulation study is conducted to evaluate the methods. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 50 条
  • [21] Robust estimation of distribution functions and quantiles with non-ignorable missing data
    Zhao, Pu-Ying
    Tang, Man-Lai
    Tang, Nian-Sheng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 575 - 595
  • [22] Examining Nonnormal Latent Variable Distributions for Non-Ignorable Missing Data
    Liu, Chen-Wei
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2021, 45 (03) : 159 - 177
  • [23] Improving the performance of Bayesian networks in non-ignorable missing data imputation
    Niloofar, P.
    Ganjali, M.
    Rohani, M. R. Farid
    KUWAIT JOURNAL OF SCIENCE, 2013, 40 (02) : 83 - 101
  • [24] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Tian Li
    Julian M. Somers
    Xiaoqiong J. Hu
    Lawrence C. McCandless
    Statistics in Biosciences, 2019, 11 : 184 - 205
  • [25] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Li, Tian
    Somers, Julian M.
    Hu, Xiaoqiong J.
    McCandless, Lawrence C.
    STATISTICS IN BIOSCIENCES, 2019, 11 (01) : 184 - 205
  • [26] STATISTICAL METHODS FOR NON-IGNORABLE MISSING DATA AND DEATH IN EPIDEMIOLOGIC STUDIES
    Rajan, K.
    de Leon, C. M.
    Evans, D.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 : S97 - S97
  • [27] An imputation method for non-ignorable missing data in studies of blood pressure
    Cook, NR
    STATISTICS IN MEDICINE, 1997, 16 (23) : 2713 - 2728
  • [28] Missing covariates in generalized linear models when the missing data mechanism is non-ignorable
    Ibrahim, JG
    Lipsitz, SR
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 173 - 190
  • [29] A semiparametric Bayesian to Poisson mixed-effects model for Epileptics data
    Duan, Xingde
    Liang, Lin
    Wu, Ying
    2014 SEVENTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO), 2014, : 40 - 44
  • [30] Covariate adjustment in clinical trials with non-ignorable missing data and non-compliance
    Levy, DE
    O'Malley, AJ
    Normand, SLT
    STATISTICS IN MEDICINE, 2004, 23 (15) : 2319 - 2339