Robust estimation of distribution functions and quantiles with non-ignorable missing data

被引:16
|
作者
Zhao, Pu-Ying [1 ]
Tang, Man-Lai [2 ]
Tang, Nian-Sheng [1 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Distribution estimation; exponential tilting; non-ignorable missing; nonparametric regression; Quantile estimation; AUXILIARY INFORMATION; NONPARAMETRIC-ESTIMATION; MODELS;
D O I
10.1002/cjs.11195
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers several robust estimators for distribution functions and quantiles of a response variable when some responses may not be observed under the non-ignorable missing data mechanism. Based on a particular semiparametric regression model for non-ignorable missing response, we propose a nonparametric/semiparametric estimation method and an augmented inverse probability weighted imputation method to estimate the distribution function and quantiles of a response variable. Under some regularity conditions, we derive asymptotic properties of the proposed distribution function and quantile estimators. Two empirical log-likelihood functions are also defined to construct confidence intervals for distribution function of a response variable. Simulation studies show that our proposed methods are robust. In particular, the semiparametric estimator is more efficient than the nonparametric estimator, and the inverse probability weighted imputation estimator is bias-corrected. The Canadian Journal of Statistics 41: 575-595; 2013 (c) 2013 Statistical Society of Canada
引用
收藏
页码:575 / 595
页数:21
相关论文
共 50 条
  • [1] A SIMPLE AND EFFICIENT ESTIMATION METHOD FOR MODELS WITH NON-IGNORABLE MISSING DATA
    Ai, Chunrong
    Linton, Oliver
    Zhang, Zheng
    [J]. STATISTICA SINICA, 2020, 30 (04) : 1949 - 1970
  • [2] Longitudinal data analysis with non-ignorable missing data
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 205 - 220
  • [3] A Latent Variable Model with Non-Ignorable Missing Data
    Takahiro Hoshino
    [J]. Behaviormetrika, 2005, 32 (1) : 71 - 93
  • [4] Population Size Estimation with Covariate Values Missing Non-ignorable
    Li-ping LIU
    Zhi-chao GUO
    Xiao-gang DUAN
    [J]. Acta Mathematicae Applicatae Sinica, 2016, 32 (03) : 659 - 668
  • [5] Population size estimation with covariate values missing non-ignorable
    Liu, Li-ping
    Guo, Zhi-chao
    Duan, Xiao-gang
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 659 - 668
  • [6] Estimation of network treatment effects with non-ignorable missing confounders
    Sun, Zhaohan
    Zhu, Yeying
    Dubin, Joel A.
    [J]. JOURNAL OF CAUSAL INFERENCE, 2024, 12 (01)
  • [7] Robust inference for longitudinal data analysis with non-ignorable and non-monotonic missing values
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICS AND ITS INTERFACE, 2012, 5 (04) : 479 - 490
  • [8] Population size estimation with covariate values missing non-ignorable
    Li-ping Liu
    Zhi-chao Guo
    Xiao-gang Duan
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 659 - 668
  • [9] Empirical likelihood method for non-ignorable missing data problems
    Zhong Guan
    Jing Qin
    [J]. Lifetime Data Analysis, 2017, 23 : 113 - 135
  • [10] Empirical likelihood method for non-ignorable missing data problems
    Guan, Zhong
    Qin, Jing
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (01) : 113 - 135