Population Size Estimation with Covariate Values Missing Non-ignorable

被引:0
|
作者
Li-ping LIU [1 ]
Zhi-chao GUO [1 ]
Xiao-gang DUAN [2 ]
机构
[1] LMAM and CSS,School of Mathematical Sciences,Peking University
[2] Beijing Normal University
基金
中国国家自然科学基金;
关键词
capture-recapture; conditional likelihood; EM algorithm; missing non-ignorable;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The main purpose of this paper is using capture-recapture data to estimate the population size when some covariate values are missing, possibly non-ignorable. Conditional likelihood method is adopted,with a sub-model describing various missing mechanisms. The derived estimate is proved to be asymptotically normal, and simulation studies via a version of EM algorithm show that it is approximately unbiased. The proposed method is applied to a real example, and the result is compared with previous ones.
引用
收藏
页码:659 / 668
页数:10
相关论文
共 50 条
  • [1] Population size estimation with covariate values missing non-ignorable
    Liu, Li-ping
    Guo, Zhi-chao
    Duan, Xiao-gang
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 659 - 668
  • [2] Population size estimation with covariate values missing non-ignorable
    Li-ping Liu
    Zhi-chao Guo
    Xiao-gang Duan
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 659 - 668
  • [3] Covariate adjustment in clinical trials with non-ignorable missing data and non-compliance
    Levy, DE
    O'Malley, AJ
    Normand, SLT
    [J]. STATISTICS IN MEDICINE, 2004, 23 (15) : 2319 - 2339
  • [4] Estimation of network treatment effects with non-ignorable missing confounders
    Sun, Zhaohan
    Zhu, Yeying
    Dubin, Joel A.
    [J]. JOURNAL OF CAUSAL INFERENCE, 2024, 12 (01)
  • [5] Analysis of longitudinal data with non-ignorable non-monotone missing values
    Troxel, AB
    Harrington, DP
    Lipsitz, SR
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 : 425 - 438
  • [6] Imputation of Ignorable and Non-ignorable Missing Values in Large Datasets Using ACO with Local Search
    Priya, R. Devi
    Sivaraj, R.
    [J]. CURRENT BIOINFORMATICS, 2018, 13 (06) : 645 - 654
  • [7] A SIMPLE AND EFFICIENT ESTIMATION METHOD FOR MODELS WITH NON-IGNORABLE MISSING DATA
    Ai, Chunrong
    Linton, Oliver
    Zhang, Zheng
    [J]. STATISTICA SINICA, 2020, 30 (04) : 1949 - 1970
  • [8] Robust estimation of distribution functions and quantiles with non-ignorable missing data
    Zhao, Pu-Ying
    Tang, Man-Lai
    Tang, Nian-Sheng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 575 - 595
  • [9] ESTIMATION OF THE MEAN WHEN DATA CONTAIN NON-IGNORABLE MISSING VALUES FROM A RANDOM EFFECTS MODEL
    SHIH, WCJ
    QUAN, H
    CHANG, MN
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 19 (03) : 249 - 257
  • [10] BAGEL: A non-ignorable missing value estimation method for mixed attribute datasets
    Priya, R. Devi
    Kuppuswami, S.
    Sivaraj, R.
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (08): : 825 - 836