A SIMPLE AND EFFICIENT ESTIMATION METHOD FOR MODELS WITH NON-IGNORABLE MISSING DATA

被引:7
|
作者
Ai, Chunrong [1 ]
Linton, Oliver [2 ]
Zhang, Zheng [3 ]
机构
[1] Chinese Univ Hong Kong, Sch Management & Econ, Shenzhen, Peoples R China
[2] Univ Cambridge, Dept Econ, Cambridge CB2 1TN, England
[3] Renmin Univ China, Inst Stat & Big Data, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized method of moments; non-ignorable nonresponse; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; SEMIPARAMETRIC EFFICIENCY; INFERENCE; GMM;
D O I
10.5705/ss.202018.0107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a simple and efficient generalized method of moments (GMM) estimation for a model with non-ignorable missing data. In contrast to the existing the GMM estimation with a fixed number of moments, we allow the number of moments to grow with the sample size and use optimal weighting. Hence, our estimator is efficient, attaining the semiparametric efficiency bound derived in the literature. Existing semiparametric estimators estimate an efficient score. However, this approach is either locally efficient, or it suffers from the curse of dimensionality and the bandwidth selection problem. In contrast, our estimator does not suffer from these problems. Moreover, the proposed estimator and its consistent covariance matrix are easily computed using commercially available GMM packages. We propose two data-driven methods to select the number of moments. A small-scale simulation study reveals that the proposed estimator outperforms existing alternatives in finite samples.
引用
收藏
页码:1949 / 1970
页数:22
相关论文
共 50 条
  • [1] Empirical likelihood method for non-ignorable missing data problems
    Zhong Guan
    Jing Qin
    [J]. Lifetime Data Analysis, 2017, 23 : 113 - 135
  • [2] Empirical likelihood method for non-ignorable missing data problems
    Guan, Zhong
    Qin, Jing
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (01) : 113 - 135
  • [3] Robust estimation of distribution functions and quantiles with non-ignorable missing data
    Zhao, Pu-Ying
    Tang, Man-Lai
    Tang, Nian-Sheng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 575 - 595
  • [4] Bayesian analysis of latent Markov models with non-ignorable missing data
    Cai, Jingheng
    Liang, Zhibin
    Sun, Rongqian
    Liang, Chenyi
    Pan, Junhao
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (13) : 2299 - 2313
  • [5] Longitudinal data analysis with non-ignorable missing data
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 205 - 220
  • [6] Missing covariates in generalized linear models when the missing data mechanism is non-ignorable
    Ibrahim, JG
    Lipsitz, SR
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 173 - 190
  • [7] Non-ignorable missing covariates in generalized linear models
    Lipsitz, SR
    Ibrahim, JG
    Chen, MH
    Peterson, H
    [J]. STATISTICS IN MEDICINE, 1999, 18 (17-18) : 2435 - 2448
  • [8] A Latent Variable Model with Non-Ignorable Missing Data
    Takahiro Hoshino
    [J]. Behaviormetrika, 2005, 32 (1) : 71 - 93
  • [9] An imputation method for non-ignorable missing data in studies of blood pressure
    Cook, NR
    [J]. STATISTICS IN MEDICINE, 1997, 16 (23) : 2713 - 2728
  • [10] BAGEL: A non-ignorable missing value estimation method for mixed attribute datasets
    Priya, R. Devi
    Kuppuswami, S.
    Sivaraj, R.
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (08): : 825 - 836