Bayesian analysis of latent Markov models with non-ignorable missing data

被引:2
|
作者
Cai, Jingheng [1 ]
Liang, Zhibin [1 ]
Sun, Rongqian [1 ]
Liang, Chenyi [1 ]
Pan, Junhao [2 ]
机构
[1] Sun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Dept Psychol, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Latent Markov models; non-ignorable missing data; MCMC methods; complete DIC; STRUCTURAL EQUATION MODELS; GROWTH MIXTURE-MODELS; VARIABLE MODELS; DISTRIBUTIONS; INFERENCE; RESPONSES;
D O I
10.1080/02664763.2019.1584162
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Latent Markov models (LMMs) are widely used in the analysis of heterogeneous longitudinal data. However, most existing LMMs are developed in fully observed data without missing entries. The main objective of this study is to develop a Bayesian approach for analyzing the LMMs with non-ignorable missing data. Bayesian methods for estimation and model comparison are discussed. The empirical performance of the proposed methodology is evaluated through simulation studies. An application to a data set derived from National Longitudinal Survey of Youth 1997 is presented.
引用
收藏
页码:2299 / 2313
页数:15
相关论文
共 50 条
  • [1] Bayesian analysis of mixtures in structural equation models with non-ignorable missing data
    Cai, Jing-Heng
    Song, Xin-Yuan
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2010, 63 (03): : 491 - 508
  • [2] Bayesian analysis of latent variable models with non-ignorable missing outcomes from exponential family
    Song, Xin-Yuan
    Lee, Sik-Yum
    STATISTICS IN MEDICINE, 2007, 26 (03) : 681 - 693
  • [3] A Latent Variable Model with Non-Ignorable Missing Data
    Takahiro Hoshino
    Behaviormetrika, 2005, 32 (1) : 71 - 93
  • [4] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Li, Tian
    Somers, Julian M.
    Hu, Xiaoqiong J.
    McCandless, Lawrence C.
    STATISTICS IN BIOSCIENCES, 2019, 11 (01) : 184 - 205
  • [5] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Tian Li
    Julian M. Somers
    Xiaoqiong J. Hu
    Lawrence C. McCandless
    Statistics in Biosciences, 2019, 11 : 184 - 205
  • [6] Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness
    Luke J. Zachmann
    Erin M. Borgman
    Dana L. Witwicki
    Megan C. Swan
    Cheryl McIntyre
    N. Thompson Hobbs
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 125 - 148
  • [7] Longitudinal data analysis with non-ignorable missing data
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 205 - 220
  • [8] Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness
    Zachmann, Luke J.
    Borgman, Erin M.
    Witwicki, Dana L.
    Swan, Megan C.
    McIntyre, Cheryl
    Hobbs, N. Thompson
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 125 - 148
  • [9] Bayesian joint analysis using a semiparametric latent variable model with non-ignorable missing covariates for CHNS data
    Ma, Zhihua
    Chen, Guanghui
    STATISTICAL MODELLING, 2021, 21 (04) : 313 - 331
  • [10] Examining Nonnormal Latent Variable Distributions for Non-Ignorable Missing Data
    Liu, Chen-Wei
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2021, 45 (03) : 159 - 177