A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data

被引:5
|
作者
Liu, Wei [1 ]
Wu, Lang [2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1016/j.csda.2008.06.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semiparametric nonlinear mixed-effects (NLME) models are very flexible in modeling long-term HIV viral dynamics. In practice, statistical analyses are often complicated due to measurement errors and missing data in covariates and non-ignorable missing data in the responses. We consider likelihood methods which simultaneously address measurement error and missing data problems. A real dataset is analyzed in detail, and a simulation study is conducted to evaluate the methods. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 50 条
  • [41] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    BMC Medical Research Methodology, 24
  • [42] Some asymptotic results for semiparametric nonlinear mixed-effects models with incomplete data
    Liu, Wei
    Wu, Lang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (01) : 52 - 64
  • [43] Analysing censored longitudinal data with non-ignorable missing values: depression in older age
    Falcaro, Milena
    Pendleton, Neil
    Pickles, Andrew
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2013, 176 (02) : 415 - 430
  • [44] Handling non-ignorable missing intimal hyperplasia data - Lessons from the VEST trial
    Overbey, Jessica R.
    Raymond, Samantha
    Chang, Helena
    Bagiella, Emilia
    CONTEMPORARY CLINICAL TRIALS, 2025, 152
  • [45] A comparison of hospital performance with non-ignorable missing covariates: An application to trauma care data
    Kirkham, Jamie J.
    STATISTICS IN MEDICINE, 2008, 27 (27) : 5725 - 5744
  • [46] PARAMETRIC FRACTIONAL IMPUTATION FOR NON-IGNORABLE CATEGORICAL MISSING DATA WITH FOLLOW-UP
    Kim, Ji Young
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (02) : 239 - 250
  • [47] A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data
    Zhang, Jiwei
    Zhang, Zhaoyuan
    Tao, Jian
    COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2643 - 2669
  • [48] Modelling non-ignorable missing-data mechanisms with item response theory models
    Holman, R
    Glas, CAW
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2005, 58 : 1 - 17
  • [49] Robust inference for longitudinal data analysis with non-ignorable and non-monotonic missing values
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    STATISTICS AND ITS INTERFACE, 2012, 5 (04) : 479 - 490
  • [50] A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data
    Jiwei Zhang
    Zhaoyuan Zhang
    Jian Tao
    Computational Statistics, 2021, 36 : 2643 - 2669