On an entropy conservation principle

被引:1
|
作者
Manuceau, J [1 ]
Troupé, M [1 ]
Vaillant, J [1 ]
机构
[1] Univ Antilles Guyane, Pointe A Pitre, Guadeloupe, France
关键词
entropy; mutual information; covariable;
D O I
10.1017/S0021900200017368
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present an entropy conservation principle applicable to either discrete or continuous variables which provides a useful tool for aggregating observations. The associated method of modality grouping transforms a variable Z(1) into a new variable Z(2) such that the mutual information I(Z(2), Y) between Y, a variable of interest, and Z(2) is equal to I(Z(1), Y).
引用
收藏
页码:607 / 610
页数:4
相关论文
共 50 条
  • [41] PRINCIPLE OF MINIMUM ENTROPY PRODUCTION
    CALLEN, HB
    [J]. PHYSICAL REVIEW, 1957, 105 (02): : 360 - 365
  • [42] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    [J]. ACM Trans. Knowl. Discov. Data, 2
  • [43] Maximum entropy principle revisited
    Dreyer, W
    Kunik, M
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) : 331 - 347
  • [44] MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION
    Bilich, F.
    DaSilva, R.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 252 - +
  • [45] Maximum entropy principle revisited
    Wolfgang Dreyer
    Matthias Kunik
    [J]. Continuum Mechanics and Thermodynamics, 1998, 10 : 331 - 347
  • [46] THE PRINCIPLE OF ENTROPY AND THE DEATH INSTINCT
    Bernfeld, Siegfried
    Feitelberg, Sergei
    [J]. INTERNATIONAL JOURNAL OF PSYCHOANALYSIS, 1931, 12 : 61 - 81
  • [47] A note on the entropy maximization principle
    Heidemann, D
    [J]. TRAFFIC AND TRANSPORTATION STUDIES, 2000, : 271 - 278
  • [48] IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE
    KAZES, E
    CUTLER, PH
    [J]. AMERICAN JOURNAL OF PHYSICS, 1988, 56 (06) : 560 - 561
  • [49] The latent maximum entropy principle
    Wang, SJ
    Rosenfeld, R
    Zhao, YX
    Schuurmans, D
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 131 - 131
  • [50] MATHEMATICAL ENTROPY AND A CRITICISM OF A USAGE OF THE PRINCIPLE OF MAXIMUM ENTROPY
    Willink, Robin
    [J]. ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING VIII, 2009, 78 : 357 - 360