MATHEMATICAL ENTROPY AND A CRITICISM OF A USAGE OF THE PRINCIPLE OF MAXIMUM ENTROPY

被引:0
|
作者
Willink, Robin [1 ]
机构
[1] Ind Res Ltd, Lower Hutt 5040, New Zealand
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The 'principle Of maximum entropy' has been advocated for choosing a probability distribution to represent individual unknowns such as systematic deviations. Supporting claims like 'the maximum-entropy distribution is minimally committal' are indefensible in this context. The idea that entropy measures information only has meaning with sequences of categorical random variables.
引用
收藏
页码:357 / 360
页数:4
相关论文
共 50 条
  • [1] ENTROPY ESTIMATION USING THE PRINCIPLE OF MAXIMUM ENTROPY
    Behmardi, Behrouz
    Raich, Raviv
    Hero, Alfred O., III
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2008 - 2011
  • [2] On the Entropy and the Maximum Entropy Principle of Uncertain Variables
    Liu, Yujun
    Ma, Guanzhong
    [J]. ENTROPY, 2023, 25 (08)
  • [3] Informational Entropy of Structure and Maximum Entropy Principle
    Chen, Jianjun
    Cao, Yibo
    Duan, Baoyan
    [J]. Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 1998, 15 (04): : 116 - 121
  • [4] Nonsymmetric entropy and maximum nonsymmetric entropy principle
    Liu, Cheng-shi
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2469 - 2474
  • [5] MAXIMUM-ENTROPY PRINCIPLE
    BALASUBRAMANIAN, V
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1984, 35 (03): : 153 - 153
  • [6] THE MAXIMUM-ENTROPY PRINCIPLE
    FELLGETT, PB
    [J]. KYBERNETES, 1987, 16 (02) : 125 - 125
  • [7] Remarks on the Maximum Entropy Principle with Application to the Maximum Entropy Theory of Ecology
    Favretti, Marco
    [J]. ENTROPY, 2018, 20 (01):
  • [8] The principle of the maximum entropy method
    Sakata, M
    Takata, M
    [J]. HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 327 - 333
  • [9] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    [J]. ACM Trans. Knowl. Discov. Data, 2
  • [10] Maximum entropy principle revisited
    Dreyer, W
    Kunik, M
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) : 331 - 347