The latent maximum entropy principle

被引:8
|
作者
Wang, SJ [1 ]
Rosenfeld, R [1 ]
Zhao, YX [1 ]
Schuurmans, D [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
关键词
D O I
10.1109/ISIT.2002.1023403
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an extension of Jaynes' maximum entropy principle to handle latent variables. We use an EM algorithm that incorporates nested iterative scaling to approximately calculate maximum entropy solutions for this principle, and give a proof of its convergence.
引用
收藏
页码:131 / 131
页数:1
相关论文
共 50 条
  • [1] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    ACM Trans. Knowl. Discov. Data, 2
  • [2] The Latent Maximum Entropy Principle
    Wang, Shaojun
    Schuurmans, Dale
    Zhao, Yunxin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (02)
  • [3] Latent maximum entropy principle for statistical language modeling
    Wang, SJ
    Rosenfeld, R
    Zhao, YX
    ASRU 2001: IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, CONFERENCE PROCEEDINGS, 2001, : 182 - 185
  • [4] Learning mixture models with the regularized latent maximum entropy principle
    Wang, SJ
    Schuurmans, D
    Peng, FC
    Zhao, YX
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (04): : 903 - 916
  • [5] Combining statistical language models via the latent maximum entropy principle
    Wang, SJ
    Schuurmans, D
    Peng, FC
    Zhao, YX
    MACHINE LEARNING, 2005, 60 (1-3) : 229 - 250
  • [6] Combining Statistical Language Models via the Latent Maximum Entropy Principle
    Shaojun Wang
    Dale Schuurmans
    Fuchun Peng
    Yunxin Zhao
    Machine Learning, 2005, 60 : 229 - 250
  • [7] Semantic N-gram language modeling with the latent maximum entropy principle
    Wang, SJ
    Schuurmans, D
    Peng, FC
    Zhao, YX
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING I, 2003, : 376 - 379
  • [8] Maximum entropy principle revisited
    Dreyer, W
    Kunik, M
    CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) : 331 - 347
  • [9] The principle of the maximum entropy method
    Sakata, M
    Takata, M
    HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 327 - 333
  • [10] MAXIMUM-ENTROPY PRINCIPLE
    BALASUBRAMANIAN, V
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1984, 35 (03): : 153 - 153