IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE

被引:4
|
作者
KAZES, E
CUTLER, PH
机构
关键词
D O I
10.1119/1.15553
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页码:560 / 561
页数:2
相关论文
共 50 条
  • [1] IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE - COMMENT
    DUNNINGDAVIES, J
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (01) : 88 - 89
  • [2] Maximum entropy principle revisited
    Dreyer, W
    Kunik, M
    CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) : 331 - 347
  • [3] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    ACM Trans. Knowl. Discov. Data, 2
  • [4] The principle of the maximum entropy method
    Sakata, M
    Takata, M
    HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 327 - 333
  • [5] MAXIMUM-ENTROPY PRINCIPLE
    BALASUBRAMANIAN, V
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1984, 35 (03): : 153 - 153
  • [6] THE MAXIMUM-ENTROPY PRINCIPLE
    FELLGETT, PB
    KYBERNETES, 1987, 16 (02) : 125 - 125
  • [7] MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION
    Bilich, F.
    DaSilva, R.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 252 - +
  • [8] The Latent Maximum Entropy Principle
    Wang, Shaojun
    Schuurmans, Dale
    Zhao, Yunxin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (02)
  • [9] Generalized maximum entropy principle
    Kesavan, H.K., 1600, (19):
  • [10] THE PRINCIPLE OF MAXIMUM-ENTROPY
    GUIASU, S
    SHENITZER, A
    MATHEMATICAL INTELLIGENCER, 1985, 7 (01): : 42 - 48