A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES

被引:7
|
作者
Allendes, Alejandro [1 ]
Otarola, Enrique [1 ]
Salgado, Abner J. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso 2390123, Chile
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 03期
关键词
a posteriori error estimates; Navier-Stokes equations; Dirac measures; Mucken-houpt weights; DOMAINS; APPROXIMATION; INEQUALITIES; POISSON; SPACES;
D O I
10.1137/19M1292436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier-Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
引用
收藏
页码:A1860 / A1884
页数:25
相关论文
共 50 条
  • [1] On a posteriori error estimates for the stationary Navier-Stokes problem
    Repin S.
    [J]. Journal of Mathematical Sciences, 2008, 150 (1) : 1885 - 1889
  • [2] Error Estimates for FEM Discretizations of the Navier-Stokes Equations with Dirac Measures
    Lepe, Felipe
    Otarola, Enrique
    Quero, Daniel
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [3] A posteriori error estimates for the large eddy simulation applied to stationary Navier-Stokes equations
    Nassreddine, Ghina
    Omnes, Pascal
    Sayah, Toni
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1468 - 1498
  • [4] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [5] A POSTERIORI ESTIMATES FOR EULER AND NAVIER-STOKES EQUATIONS
    Morosi, Carlo
    Pernici, Mario
    Pizzocchero, Livid
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 847 - 855
  • [6] A posteriori error estimation for Navier-Stokes equations
    Elakkad, A.
    Guessous, N.
    Elkhalfi, A.
    [J]. NEW ASPECTS OF FLUID MECHANICS, HEAT TRANSFER AND ENVIRONMENT, 2010, : 50 - 60
  • [7] Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures
    Felipe Lepe
    Enrique Otárola
    Daniel Quero
    [J]. Journal of Scientific Computing, 2021, 87
  • [8] WEIGHTED ESTIMATES FOR STATIONARY NAVIER-STOKES EQUATIONS
    FREHSE, J
    RUZICKA, M
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) : 53 - 66
  • [9] Accuracy of semiGLS stabilization of FEM for solving Navier-Stokes equations and a posteriori error estimates
    Burda, P.
    Novotny, J.
    Sistek, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1167 - 1173
  • [10] An a posteriori error estimator for a LPS method for Navier-Stokes equations
    Araya, Rodolfo
    Rebolledo, Ramiro
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 179 - 195