A posteriori error estimation for Navier-Stokes equations

被引:0
|
作者
Elakkad, A. [1 ]
Guessous, N.
Elkhalfi, A. [1 ]
机构
[1] Fac Sci & Tech, Lab Genie Mecan, Fes, Morocco
关键词
Navier-Stokes Equations; Finite Element Method; A posteriori error estimation; Adina system; CAVITY FLOW; STATIONARY;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes numerical solutions of incompressible Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. A numerical experiment on the Backward-facing step problem and driven cavity flow are given to demonstrate the effectiveness of the error estimate. We compare the result with the solution from ADINA system as well as with values from other simulations.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [1] A posteriori error estimation for the steady Navier-Stokes equations in random domains
    Guignard, Diane
    Nobile, Fabio
    Picasso, Marco
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 483 - 511
  • [2] A posteriori error estimation and adaptivity based on VMS for the incompressible Navier-Stokes equations
    Irisarri, Diego
    Hauke, Guillermo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [3] Variational multiscale a posteriori error estimation for systems: The Euler and Navier-Stokes equations
    Hauke, Guillermo
    Fuster, Daniel
    Lizarraga, Fernando
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1493 - 1524
  • [4] An a posteriori error estimator for a LPS method for Navier-Stokes equations
    Araya, Rodolfo
    Rebolledo, Ramiro
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 179 - 195
  • [5] A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations
    Meidner, Dominik
    Richter, Thomas
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 288 : 45 - 59
  • [6] A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : A1860 - A1884
  • [7] A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem
    Hadji, M. L.
    Assala, A.
    Nouri, F. Z.
    [J]. CALCOLO, 2015, 52 (04) : 559 - 576
  • [8] A posteriori error analysis and adaptivity for a VEM discretization of the Navier-Stokes equations
    Canuto, Claudio
    Rosso, Davide
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
  • [9] A posteriori error estimation and error control for finite element approximations of the time-dependent Navier-Stokes equations
    Prudhomme, S
    Oden, JT
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1999, 33 (04) : 247 - 262
  • [10] A POSTERIORI ESTIMATES FOR EULER AND NAVIER-STOKES EQUATIONS
    Morosi, Carlo
    Pernici, Mario
    Pizzocchero, Livid
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 847 - 855