A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES

被引:7
|
作者
Allendes, Alejandro [1 ]
Otarola, Enrique [1 ]
Salgado, Abner J. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso 2390123, Chile
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 03期
关键词
a posteriori error estimates; Navier-Stokes equations; Dirac measures; Mucken-houpt weights; DOMAINS; APPROXIMATION; INEQUALITIES; POISSON; SPACES;
D O I
10.1137/19M1292436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier-Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
引用
收藏
页码:A1860 / A1884
页数:25
相关论文
共 50 条
  • [31] Variational multiscale a posteriori error estimation for systems: The Euler and Navier-Stokes equations
    Hauke, Guillermo
    Fuster, Daniel
    Lizarraga, Fernando
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1493 - 1524
  • [32] RESONANCE AND THE STATIONARY NAVIER-STOKES EQUATIONS
    SHAPIRO, VL
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 359 - 369
  • [33] Error estimates for two-level penalty finite volume method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Feng, Xinlong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1918 - 1928
  • [34] Analyticity estimates for the Navier-Stokes equations
    Herbst, I.
    Skibsted, E.
    [J]. ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1990 - 2033
  • [35] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [36] Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations
    Gallouet, Thierry
    Herbin, Raphaele
    Maltese, David
    Novotny, Antonin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 543 - 592
  • [37] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Bajpai, Saumya
    Goswami, Deepjyoti
    Ray, Kallol
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (02) : 937 - 1002
  • [38] Unconditional Optimal Error Estimates for the Transient Navier-Stokes Equations with Damping
    Li, Minghao
    Li, Zhenzhen
    Shi, Dongyang
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (01) : 248 - 274
  • [40] ERROR ESTIMATES FOR REDUCED ORDER POD MODELS OF NAVIER-STOKES EQUATIONS
    Ravindran, S. S.
    [J]. IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 651 - 657