A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES

被引:7
|
作者
Allendes, Alejandro [1 ]
Otarola, Enrique [1 ]
Salgado, Abner J. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso 2390123, Chile
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 03期
关键词
a posteriori error estimates; Navier-Stokes equations; Dirac measures; Mucken-houpt weights; DOMAINS; APPROXIMATION; INEQUALITIES; POISSON; SPACES;
D O I
10.1137/19M1292436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier-Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
引用
收藏
页码:A1860 / A1884
页数:25
相关论文
共 50 条