On a posteriori error estimates for the stationary Navier-Stokes problem

被引:0
|
作者
Repin S. [1 ]
机构
[1] Steklov Institute of Mathematics in St. Petersburg, Russia, St. Petersburg
关键词
Weak Solution; Steklov Institute; Incompressible Fluid; Energy Norm; Lipschitz Domain;
D O I
10.1007/s10958-008-0103-3
中图分类号
学科分类号
摘要
We obtain a computable upper bound for the difference between a solution to the stationary Navier-Stokes problem and any solenoidal vector-valued function satisfying the boundary condition and possessing necessary differentiability properties. For sufficiently small velocities this estimate implies an estimate of the deviation from exact solution in the energy norm and the uniqueness of a weak solution. Bibliography: 3 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:1885 / 1889
页数:4
相关论文
共 50 条
  • [1] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [2] A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : A1860 - A1884
  • [3] A posteriori error estimates for the large eddy simulation applied to stationary Navier-Stokes equations
    Nassreddine, Ghina
    Omnes, Pascal
    Sayah, Toni
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1468 - 1498
  • [4] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [5] A POSTERIORI ESTIMATES FOR EULER AND NAVIER-STOKES EQUATIONS
    Morosi, Carlo
    Pernici, Mario
    Pizzocchero, Livid
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 847 - 855
  • [6] A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem
    Hadji, M. L.
    Assala, A.
    Nouri, F. Z.
    [J]. CALCOLO, 2015, 52 (04) : 559 - 576
  • [7] A posteriori error estimation for Navier-Stokes equations
    Elakkad, A.
    Guessous, N.
    Elkhalfi, A.
    [J]. NEW ASPECTS OF FLUID MECHANICS, HEAT TRANSFER AND ENVIRONMENT, 2010, : 50 - 60
  • [8] A POSTERIORI MODELING ERROR ESTIMATES FOR THE ASSUMPTION OF PERFECT INCOMPRESSIBILITY IN THE NAVIER-STOKES EQUATION
    Fischer, Julian
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (05) : 2178 - 2205
  • [9] On the Navier problem for the stationary Navier-Stokes equations
    Russo, Antonio
    Tartaglione, Alfonsina
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2387 - 2408
  • [10] Accuracy of semiGLS stabilization of FEM for solving Navier-Stokes equations and a posteriori error estimates
    Burda, P.
    Novotny, J.
    Sistek, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1167 - 1173