Positive solutions for parametric (p(z), q(z))-equations

被引:4
|
作者
Gasinski, Leszek [1 ]
Krech, Ireneusz [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
anisotropic regularity; anisotropic maximum principle; positive solutions; minimal positive solution; superlinear reaction; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; EIGENVALUE PROBLEM; INEQUALITY; INDEFINITE; EXISTENCE; DRIVEN; (P;
D O I
10.1515/math-2020-0074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric elliptic equation driven by the anisotropic (p, q)-Laplacian. The reaction is superlinear. We prove a "bifurcation-type" theorem describing the change in the set of positive solutions as the parameter lambda moves in R+ = (0, +infinity).
引用
收藏
页码:1076 / 1096
页数:21
相关论文
共 50 条
  • [41] POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS PARAMETRIC EQUATIONS
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) : 1 - 15
  • [42] q-deformation of z→(αz+β)/(γz+δ)
    Klimcík, C
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4352 - 4359
  • [43] Asymptotic expansion of the generalized hypergeometric function pFq(z) as z →∞ for p < q
    Volkmer, Hans
    ANALYSIS AND APPLICATIONS, 2023, 21 (02) : 535 - 545
  • [44] Twin Positive Solutions for a Parametric Double Phase Equation with p, q-Growth
    Zhenhai Liu
    Nikolaos S. Papageorgiou
    Mediterranean Journal of Mathematics, 2023, 20
  • [45] Twin Positive Solutions for a Parametric Double Phase Equation with p, q-Growth
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [46] Positive solutions for (p, q)-equations with convection and a sign-changing reaction
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 40 - 57
  • [47] Existence and Nonexistence of Positive Solutions for Singular (p, q)-Equations with Superdiffusive Perturbation
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [48] POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS
    Papageorgiou, Nikolaos s.
    Qin, Dongdong
    Radulescu, Vicentiu d.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [49] Existence and Nonexistence of Positive Solutions for Singular (p, q)-Equations with Superdiffusive Perturbation
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Results in Mathematics, 2021, 76
  • [50] On the equations of the shape s=f (x,v,z,p,q) which are of the first class
    Laine, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1926, 182 : 1455 - 1456