Positive solutions for parametric (p(z), q(z))-equations

被引:4
|
作者
Gasinski, Leszek [1 ]
Krech, Ireneusz [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
anisotropic regularity; anisotropic maximum principle; positive solutions; minimal positive solution; superlinear reaction; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; EIGENVALUE PROBLEM; INEQUALITY; INDEFINITE; EXISTENCE; DRIVEN; (P;
D O I
10.1515/math-2020-0074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric elliptic equation driven by the anisotropic (p, q)-Laplacian. The reaction is superlinear. We prove a "bifurcation-type" theorem describing the change in the set of positive solutions as the parameter lambda moves in R+ = (0, +infinity).
引用
收藏
页码:1076 / 1096
页数:21
相关论文
共 50 条
  • [21] SOLUTIONS OF Z-MATRIX EQUATIONS
    HERSHKOWITZ, D
    SCHNEIDER, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 106 : 25 - 38
  • [22] On positive solutions for (p, q)-Laplace equations with two parameters
    Bobkov, Vladimir
    Tanaka, Mieko
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 3277 - 3301
  • [23] On the set of positive solutions for resonant Robin (p, q)-equations
    Papageorgiou, Nikolaos S.
    Zhang, Youpei
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 1132 - 1153
  • [24] POSITIVE SOLUTIONS FOR RESONANT (p, q)-EQUATIONS WITH CONCAVE TERMS
    Hu, Shouchuan
    Papageorgiou, Nikolas S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) : 2639 - 2656
  • [25] On positive solutions for (p, q)-Laplace equations with two parameters
    Vladimir Bobkov
    Mieko Tanaka
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 3277 - 3301
  • [26] A PAIR OF POSITIVE SOLUTIONS FOR (p, q)-EQUATIONS WITH COMBINED NONLINEARITIES
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (01) : 203 - 215
  • [27] TWIN POSITIVE SOLUTIONS FOR RESONANT SINGULAR (p, q)-EQUATIONS
    Onete, Florin-Iulian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 169 - 182
  • [28] Meromorphic solutions of functional equations f(G(z)) = R(f(z))
    Ishizaki, Katsuya
    Morosawa, Shunsuke
    Yakou, Mitsunori
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (01) : 15 - 22
  • [29] A pair of positive solutions for the Dirichlet p(z)-Laplacian with concave and convex nonlinearities
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1347 - 1360
  • [30] A pair of positive solutions for the Dirichlet p(z)-Laplacian with concave and convex nonlinearities
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Journal of Global Optimization, 2013, 56 : 1347 - 1360