Positive solutions for parametric (p(z), q(z))-equations

被引:4
|
作者
Gasinski, Leszek [1 ]
Krech, Ireneusz [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
anisotropic regularity; anisotropic maximum principle; positive solutions; minimal positive solution; superlinear reaction; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; EIGENVALUE PROBLEM; INEQUALITY; INDEFINITE; EXISTENCE; DRIVEN; (P;
D O I
10.1515/math-2020-0074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric elliptic equation driven by the anisotropic (p, q)-Laplacian. The reaction is superlinear. We prove a "bifurcation-type" theorem describing the change in the set of positive solutions as the parameter lambda moves in R+ = (0, +infinity).
引用
收藏
页码:1076 / 1096
页数:21
相关论文
共 50 条