Irregularity of Distribution in Wasserstein Distance

被引:8
|
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Supervised Tree-Wasserstein Distance
    Takezawa, Yuki
    Sato, Ryoma
    Yamada, Makoto
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7090 - 7101
  • [42] Wasserstein Distance and the Distributionally Robust TSP
    Carlsson, John Gunnar
    Behroozi, Mehdi
    Mihic, Kresimir
    OPERATIONS RESEARCH, 2018, 66 (06) : 1603 - 1624
  • [43] On quantum versions of the classical Wasserstein distance
    Agredo, J.
    Fagnola, F.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 910 - 922
  • [44] Structure preservation via the Wasserstein distance
    Bartl, Daniel
    Mendelson, Shahar
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (07)
  • [45] Eulerian calculus for the contraction in the Wasserstein distance
    Otto, F
    Westdickenberg, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) : 1227 - 1255
  • [46] The Quantum Wasserstein Distance of Order 1
    De Palma, Giacomo
    Marvian, Milad
    Trevisan, Dario
    Lloyd, Seth
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6627 - 6643
  • [47] Estimation of smooth densities in Wasserstein distance
    Weed, Jonathan
    Berthet, Quentin
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [48] The Ultrametric Gromov-Wasserstein Distance
    Memoli, Facundo
    Munk, Axel
    Wan, Zhengchao
    Weitkamp, Christoph
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1378 - 1450
  • [49] Wasserstein distance in terms of the comonotonicity copula
    Abdellatif, Mariem
    Kuchling, Peter
    Ruediger, Barbara
    Ventura, Irene
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024,
  • [50] Approximate Bayesian computation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) : 235 - 269